Background: Women’s ability to get sleep can be affected by pregnancy-related hormonal changes or other external stressful situations like the coronavirus disease 2019 (COVID-19). Objective: The objective of this study was to assess the proportion of poor sleep quality during the COVID-19 pandemic and its determinants among pregnant women attending antenatal care (ANC) services. Methods: An institutional-based cross-sectional study was conducted among 423 women attending ANC services at the health facilities in Debre Berhan Town, Ethiopia, from May to June 2020. A systematic random sampling technique was used to select the required samples. The tool consisted of questions that assessed (1) socio-demographic characteristics, obstetric and health care service-related characteristics; and media exposure to get information regarding COVID-19 infection; (2) To assess sleep quality; the Pittsburgh Sleep Quality Index (PSQI) was applied. And a global score of >5 indicates poor sleep quality, and a global score of ≤5 indicates good sleep quality. Result: The overall prevalence of poor sleep quality was 62.8%, and was associated with pregnant women aged ≥46 years (AOR = 4.27), being in the third trimester (AOR = 2.51), being multigravida (AOR = 2.72), and having co-morbidity (AOR = 3.57). Conclusion: The prevalence of poor sleep quality among pregnant women during the pandemic was found to be high. Advanced maternal age, third trimester pregnancy, being multigravida, and having comorbidity were determinants of poor sleep quality among pregnant women during the COVID-19 pandemic.
An institutional-based cross-sectional study was conducted from May 1 to June 1, 2020, in Debre Berhan Town public health institutions. The source populations for the study were all pregnant women who are attending antenatal care services in Debre Berhan town. All pregnant women who are attending antenatal care services in the Town during the study period and fulfill the inclusion criteria were included as the study population. The sample size was determined by using the single population proportion formula with the assumption of 50% poor sleep quality, a 95% confidence interval, and a 5% marginal error. After adding a 10% non-response rate, the final sample size was 423. In this study, pregnant women who visited the public health institutions in Debre Berhan Town for ANC services were included in the study. And pregnant women who were unable to communicate effectively due to serious illness were excluded from the study. To select our study participants, all public health facilities in Debre Berhan town were considered, and then based on the number of pregnant women that visited the public health facilities during the preceding month before data collection, proportional allocation of the total sample size was carried out to get the required sample from each public health facility. Finally, the determined samples were selected with a mean age of 28 years (SD ± 4.86) by a systematic random sampling technique. Pretested and interviewer-administered questionnaires were used for the whole survey. The tool consisted of 33 items categorized in to two sections, (1) socio-demographic characteristics, obstetric and health care service-related characteristics; and media exposure to get information regarding COVID-19 infection with a total of 14 items; (2) items to assess sleep quality by the Pittsburgh Sleep Quality Index (PSQI). The Pittsburgh Sleep Quality Index contains 19 Likert-type and open-ended questions. Respondents were asked about their overall sleep quality and how frequently they had experienced certain sleep difficulties in the previous month. The 19 items were combined to form seven component scores, each of which had a range of 0–3, with a higher score indicating more acute sleep disturbances. Then, the seven component scores were added to yield a single global score ranging from 0 to 21, with the higher score indicating severe sleep difficulties in all areas. PSQI developers have suggested a cutoff score of 5 for the global scale as it was 88.5% valid to correctly identify the problem (27–29). The Cronbach alpha of PSQI in the current study was 0.72. Furthermore, the data was collected by trained BSc midwives, and the consistency and completeness of the data were checked daily by supervisors. Is defined based on the PSQI score; hence, a global score of >5 indicates poor sleep quality, and a global score of ≤5 indicates good sleep quality (27). Women who had access to either television, radio, or read newspapers at least once a week was considered exposed to the media. Is defined as the co-existence of diagnosed chronic medical conditions like asthma, diabetes mellitus, heart disease, hypertension, depression, cancer, and chronic kidney disease among pregnant women (30). The data was first entered into EPI INFO™ 7 and then exported to STATA version 14, statistical software for analysis. Frequencies and cross-tabulations were applied to summarize descriptive statistics of the data, and tables were used for data presentation. A binary logistic regression model was used to identify factors associated with poor sleep quality. Those variables with a p-value less than or equal to 0.2 from the bi-variable analysis were candidates for multivariable analysis. Variables with a p-value of less than 0.05 in multivariable analysis were declared as statistically significant factors for poor sleep quality. Moreover, the association was measured using odds ratios with a 95% confidence interval. Model fitness was also checked by the Hosmer-Lemeshow goodness of fit test (P-value = 0.491). This study was approved by the Institutional Review Board (IRB) of Debre Berhan University and an official permission letter was gained from the concerned body. Written informed consent was obtained from each participant before conducting the actual data collection process. Additionally, confidentiality was maintained by avoiding registration of personal identifiers and no raw data was given to anyone other than the investigator.
N/A