Objective To assess the cost–effectiveness of community-based practitioner programmes in Ethiopia, Indonesia and Kenya. Methods Incremental cost–effectiveness ratios for the three programmes were estimated from a government perspective. Cost data were collected for 2012. Life years gained were estimated based on coverage of reproductive, maternal, neonatal and child health services. For Ethiopia and Kenya, estimates of coverage before and after the implementation of the programme were obtained from empirical studies. For Indonesia, coverage of health service interventions was estimated from routine data. We used the Lives Saved Tool to estimate the number of lives saved from changes in reproductive, maternal, neonatal and child health-service coverage. Gross domestic product per capita was used as the reference willingness-to-pay threshold value. Findings The estimated incremental cost per life year gained was 82 international dollars ($)in Kenya, $999 in Ethiopia and $3396 in Indonesia. The results were most sensitive to uncertainty in the estimates of life-years gained. Based on the results of probabilistic sensitivity analysis, there was greater than 80% certainty that each programme was cost-effective. Conclusion Community-based approaches are likely to be cost-effective for delivery of some essential health interventions where community-based practitioners operate within an integrated team supported by the health system. Community-based practitioners may be most appropriate in rural poor communities that have limited access to more qualified health professionals. Further research is required to understand which programmatic design features are critical to effectiveness.
We estimated incremental cost–effectiveness ratios for community-based practitioner programmes, using data from four districts: Shebedino (Ethiopia), south-west Sumba (Indonesia), Takala (Indonesia) and Kasarani (Kenya). In Indonesia, two districts were chosen to better reflect the diversity of context and programme implementation in that country. The main inclusion criteria for country selection were that programmes should be national in scale, performing similar activities and with data available on effectiveness. We assessed the cost–effectiveness of each programme from a government perspective. Costs and lives saved were estimated over a one-year time period. We assumed that all costs and benefits were additional to those that would have occurred in the absence of the new programme (Table 2). Disability-adjusted life years and quality-adjusted life years have been widely used as measures of the effectiveness of health programmes. However, the disability and utility weights required to quantify these outcomes were not available for our study outcomes. We used life-years gained (LYG) as our measure of effectiveness. LYG is a validated measure of population health;17 though it does not account for quality of life, it is suitable for this study given the data available. We used the Lives Saved Tool (LiST)18 to estimate the number of lives saved due to changes in coverage of reproductive, maternal, neonatal and child health interventions. The Lives Saved Tool models the impact of scaling-up the coverage of proven interventions on maternal, neonatal and child mortality by integrating evidence on intervention effectiveness19,20and demographic projections of mortality. To estimate the number of lives saved, we adjusted coverage data to a target level of coverage. For Ethiopia and Kenya, target coverage data were obtained from empirical studies evaluating the impact of each country’s programme.21–23 For Indonesia, coverage data were obtained from routine data reported by village midwives. The Lives Saved Tool uses national demographic data to produce estimates of lives saved in a national population. Therefore, national estimates of lives saved were scaled down to district level based on the proportion of the national population in each study district. We classified lives saved in four age groups: live births; children younger than 1 month; children aged between 1 and 59 months and mothers. For each category, the number of lives saved was multiplied by the remaining life expectancy at the time death was averted. The resulting LYG were discounted using a 3% annual discount rate.24 Remaining life expectancies were obtained from life tables.25 The financial cost (for the year 2012 or earlier where necessary) of each programme was estimated from data collected between August and September 2013 from each country. Local currencies were converted to international dollars using purchasing power parity exchange rates (available at http://data.worldbank.org/indicator/PA.NUS.PPP). We report all cost data in international dollars ($). Cost data included start-up costs and recurrent costs. Equivalent annual costs were estimated by annuitizing total start-up cost based on a useful life of 10 years and a 3% discount rate.24 In the Ethiopian model, an attrition rate of 1.1% was applied to account for attrition after training of community-based practitioners. However, due to lack of relevant data, the attrition rate was assumed to be zero in the Indonesian and Kenyan models. Recurrent costs were estimated based on operational processes of the programme in 2012 and combined with annual start-up costs to obtain estimates of total annual cost of the programme. Overhead costs equivalent to 15% were added to account for cost incurred at higher administrative levels.26 Incremental cost of medicines and vaccines attributed to changes in coverage of reproductive, maternal, neonatal and child interventions were included for only the Ethiopian model but excluded from the Kenyan and Indonesian models due to lack of data. Unit cost data were collected from a variety of sources including expenses files, health workers’ payroll records, key informant interviews and supply catalogues for medicines and supplies.27 For all districts, incremental cost–effectiveness ratios were expressed as incremental cost per LYG; the detailed cost–effectiveness model is available from the authors. Cost–effectiveness was assessed using each country’s national gross domestic product (GDP) per capita as the reference willingness-to-pay threshold value.28 We did two sensitivity analyses. First, we did a univariate sensitivity analysis. The impact of each model parameter (costs, LYG, attrition rate, discount rate, percent overhead cost and useful life of programme), on the results was assessed by sequentially varying each parameter over a specified range (± 30%) while holding the other parameters constant. Second, we did a probabilistic sensitivity analysis. An appropriate probability distribution was fitted around each parameter mean and varied within lower and upper bounds (± 10). All cost inputs were specified as gamma distributions; LYG was specified as a normal distribution and attrition rate and percentages (used in estimating overhead costs) were specified as beta distributions.29 Parameter uncertainty was propagated through the model using 5000 Monte Carlo simulations and the results presented as cost–effectiveness acceptability curves.
N/A