Across group-living animals, linear dominance hierarchies lead to disparities in access to resources, health outcomes and reproductive performance. Studies of how dominance rank predicts these traits typically employ one of several dominance rank metrics without examining the assumptions each metric makes about its underlying competitive processes. Here, we compare the ability of two dominance rank metrics – simple ordinal rank and proportional or ‘standardized’ rank – to predict 20 traits in a wild baboon population in Amboseli, Kenya. We propose that simple ordinal rank best predicts traits when competition is density-dependent, whereas proportional rank best predicts traits when competition is density-independent. We found that for 75% of traits (15/20), one rank metric performed better than the other. Strikingly, all male traits were best predicted by simple ordinal rank, whereas female traits were evenly split between proportional and simple ordinal rank. Hence, male and female traits are shaped by different competitive processes: males are largely driven by density-dependent resource access (e.g. access to oestrous females), whereas females are shaped by both density-independent (e.g. distributed food resources) and density-dependent resource access. This method of comparing how different rank metrics predict traits can be used to distinguish between different competitive processes operating in animal societies.
The Amboseli Baboon Research Project is a long-term study of a natural population of savannah baboons located in Kenya’s Amboseli basin. Data collection began in 1971 and continues today [49]. The population consists primarily of yellow baboons (Papio cynocephalus) that experience some naturally occurring admixture with olive baboons (P. anubis) [50–52]. The number of social groups under observation at any given time has ranged from 1 to 6, varying as a result of logistical considerations or group fissions and fusions. All individuals in study groups are visually recognized based on morphological and facial features. Near-daily demographic, environmental and behavioural data have been collected throughout the study, and paternity data (beginning around 1995) and endocrinological data (beginning around 2000) have been collected for part of the study. We routinely calculate both simple ordinal ranks and proportional ranks for males and females on a monthly basis. Only adult ranks are considered in this analysis. For traits measured in immature individuals, maternal dominance rank is used as the predictor variable. Dominance ranks are determined by assigning wins and losses in dyadic agonistic interactions between same-sex individuals. Data on agonistic interactions are collected ad libitum during daily data collection, typically while the observer is simultaneously carrying out random-order focal animal sampling [53]. This sampling procedure ensures that observers continually move to new locations within the social group and observe focal individuals on a regular rotating basis. An individual is considered to win an agonistic interaction if they displace another individual, or if they give only aggressive or neutral gestures while their opponent gives only submissive gestures. All agonistic outcomes are entered into sex-specific dominance matrices (i.e. adult males are ranked separately from adult females). Individuals are placed in order of descending, sex-specific rank so as to minimize the number of entries that fall below the diagonals of the matrices [37,54]. Simple ordinal ranks are produced by numbering individuals according to the order in which they occur in the monthly matrix (1, 2, 3 … n, where n = hierarchy size), with 1 being the highest-ranking male or female in the hierarchy and n being the lowest. Proportional ranks are computed as 1−((simple ordinal rank−1)/(hierarchy size−1)) to produce ranks that fall in the range of [0,1] for every hierarchy, with 1 being the highest-ranking male or female in the hierarchy and 0 being the lowest. We aimed to test whether 20 different sex- and age-class-specific traits were better predicted by simple ordinal rank or proportional rank in the Amboseli baboon population. We first identified previous publications from the Amboseli Baboon Research Project that reported statistically significant effects of rank on various traits. For a complete list of re-analyses performed, see electronic supplementary material, table S1. Our methods of re-analysis followed three steps: