Background: The maternal near-miss (MNM) concept has been developed to assess life-threatening conditions during pregnancy, childhood, and puerperium. In recent years, caesarean section (CS) rates have increased rapidly in many low- and middle-income countries, a trend which might have serious effects on maternal health. Our aim was to describe the occurrence and panorama of maternal near-miss and death in two low-resource settings, and explore their association with CS complications.Methods: We performed a cross-sectional study, including all women who fulfilled the WHO criteria for MNM or death between February and June 2012 at a university hospital and a regional hospital in Dar es Salaam, Tanzania. Cases were assessed individually to determine their association with CS. Main outcome measures included MNM ratio; maternal mortality ratio; proportion of MNM and death associated with CS complications; and the risk for such outcomes per 1,000 operations. The risk ratio of life-threatening CS complications at the university hospital compared to the regional hospital was calculated.Results: We identified 467 MNM events and 77 maternal deaths. The MNM ratio was 36 per 1,000 live births (95% CI 33-39) and the maternal mortality ratio was 587 per 100,000 live births (95% CI 460-730). Major causes were eclampsia and postpartum haemorrhage, but we also detected nine MNM events and five deaths from iatrogenic complications. CS complications accounted for 7.9% (95% CI 5.6-11) of the MNM events and 13% (95% CI 6.4-23) of the maternal deaths. The risk of experiencing a life-threatening CS complication was three times higher at the regional hospital (22/1,000 operations, 95% CI 12-37) compared to the university hospital (7.0/1,000 operations, 95% CI 3.8-12) (risk ratio 3.2, 95% CI 1.5-6.6).Conclusions: The occurrence of MNM and death at the two hospitals was high, and many cases were associated with CS complications. The maternal risks of CS in low-resource settings must not be overlooked, and measures should be taken to avoid unnecessary CSs. More comprehensive training of staff, improved postoperative surveillance, and a more even distribution of resources within the health care system might reduce the risks of CS.
We conducted a cross-sectional study at one university hospital and one regional hospital in Dar es Salaam, Tanzania, between February and June 2012. Obstetric and gynaecological wards were visited every second day by the main researcher (HL) and all medical records of admitted patients were reviewed in order to identify cases. The record books in which midwives document severe cases were also examined. Data on demographic and clinical characteristics were collected from medical records and antenatal cards. Maternal death files, routinely gathered by hospital staff, were reviewed monthly. Cases in which the underlying cause of MNM or death was unclear were discussed between three of the authors (HL, HK, and MA) and guidance was sought in the International Statistical Classification of Diseases and Related Health problems-Maternal Mortality [21]. As the exact chain of events was sometimes difficult to follow due to a lack of information from referring institutions, the leading cause of MNM or death was considered to be the diagnosis that most likely had put the woman in a life-threatening condition. Our definition thereby deviated from the international classification system of maternal deaths, where the underlying cause is defined as the disease or condition that initiated the morbid chain of events leading to a woman’s death [21]. Data on total number of deliveries, live births, and CSs were derived from the obstetric database at the university hospital and the birth register at the regional hospital. Tanzania is a low-income country with high maternal and perinatal mortality [22]. It is the policy of the government to provide maternity care free of charge. The country’s latest Demographic and Health Survey estimated the total fertility rate to 5.4 children per woman; the national CS rate to 5.0%; and the MMR to 454 maternal deaths per 100,000 live births (95% confidence interval [CI] 353–556) [22]. Due to a shortage of qualified medical doctors, Tanzania has been training non-physician clinicians, so-called assistant medical officers, since the 1960s [23]. These are secondary-school graduates who receive a total of five years of medical education, which allows them to make diagnoses, write prescriptions, and practise medicine, surgery, and anaesthesiology [23]. Dar es Salaam is the largest city in the country, with an estimated four million inhabitants [24]. Most residents live within ten kilometres of a health care facility, and 90% of all deliveries are attended by skilled personnel [22]. The public hospitals in Dar es Salaam include one university hospital, which serves as a teaching and referral institution, three regional hospitals, and one military hospital. The health care system has a hierarchical structure, where the majority of deliveries take place at health centres and regional hospitals. After an upgrade of the peripheral hospitals in the in the early 21st century, access to CSs has increased at these facilities. There are, however, still large discrepancies in the CS rates between the university hospital and the peripheral hospitals. In order to understand the MNM panorama on different levels, we conducted our study at the university hospital and in one of the regional hospitals. As the largest public hospital in the country, the university hospital handles about 9,000 deliveries annually. The obstetric department is well-staffed, with one specialist obstetrician, two residents, and one intern doctor on call each day. Patients with critical conditions are admitted to the Eclampsia Ward, where their vital signs are monitored hourly. In the main intensive care unit, treatment with vaso-active drugs and ventilation can be provided. Blood for transfusions is supplied through the hospital’s blood bank, but is sometimes insufficient and must be supplemented by the National Blood Bank. The CS rate in 2011 was 49% and instrumental deliveries constituted around 1% of the total deliveries [15]. The majority of CSs are performed by residents (medical doctors doing their specialist training) in obstetrics and gynaecology in one of the department’s two own operating theatres. Anaesthesia is provided by nurse anaesthetic assistants (qualified nurses trained in anaesthesia) or residents in anaesthesia. There are a few licensed anaesthesiologists, who mainly work as supervisors. The regional hospital is situated in the outskirts of Dar es Salaam. With regard to obstetric population and available resources, it is representative of the other two regional hospitals in the area. About 20,000 deliveries are performed annually. During the study period, two specialists in obstetrics and gynaecology, seven registrars (medical doctors working after completing their internship but before starting specialist training), and eleven assistant medical officers worked in the obstetric and gynaecological wards. There is a conspicuous shortage of equipment, including gloves, syringes, Oxytocin, and electricity. Laboratory services are rarely available. The Eclampsia Ward admits patients with eclampsia and other severe conditions. Magnesium sulphate is usually in stock. Blood for transfusions is provided by the National Blood Bank, which allocates a few units to the hospital every day. As there is only one operating theatre serving the entire hospital, the facilities cannot meet the demands for CS and patients are occasionally referred to the university hospital for surgery. CSs are performed by registrars or assistant medical officers. Anaesthesia is provided by nurse anaesthetic assistants or assistant medical officers. We included MNM events based on the WHO criteria [2, 25] and maternal deaths according to the WHO definition [21] among all women with complications during pregnancy, childbirth, or within 42 days after termination of pregnancy. A near-miss criterion was considered fulfilled if stated in the medical record or if it could be observed by the researcher, e.g. hyperventilation, repeated fits, or jaundice in the presence of pre-eclampsia. Due to limited resources, some laboratory- and management-based criteria were not applicable. As we hoped to include patients on the clinical criteria and wanted to make results as comparable as possible with other studies, we did not modify the criteria. The definitions of the criteria, their applicability in the two settings, and how we interpreted them are presented in Table A1, Additional file 1. For example, we interpreted the criterion “uncontrollable fits” as unconsciousness and repeated fits. We followed women during hospitalization until their discharge or death. Once women were discharged, they were considered to have survived. Women who were re-admitted to one of the study sites within 42 days after termination of pregnancy and died, were recorded as maternal deaths. Referrals from the regional hospital to the university hospital were presented in the data for the university hospital. Women who experienced two unrelated MNM events, such as eclampsia and infection, were recorded as two events. In order to identify women who had experienced a MNM event or death due to a CS complication, we assessed the files of all women who had fulfilled their first MNM criterion or died after having a CS, or had a diagnosis that implied a CS complication. All cases potentially associated with CS were reviewed by four of the authors (HL, KH, MR, and BE) to reach a consensus on whether they were associated with the CS or not. In the assessment, the indication of CS, the timing of MNM or death, and any pre-existing conditions were taken into account. The association between MNM or death and CS was graded as strong, moderate, or weak. Strong associations were complications specific to surgery or anaesthesia, for example damage to intra-abdominal organs. Complications not specific to surgery or anaesthesia, but with an increased risk after CS (e.g. postpartum haemorrhage leading to shock, hysterectomy, blood transfusion, or death [13, 16–18]), were considered moderate associations. Moderate associations also included cases where there was a pre-existing condition that might have affected the outcome, such as severe pre-eclampsia predisposing the woman to intra-abdominal haemorrhage after CS. Weak associations were cases in which it was unlikely that the CS complication itself had caused the MNM event or death. Data was computerised using Excel and analysed with SPSS. We calculated the MNM ratio (MNMR), defined as the number of MNM events per 1,000 live births, and the MMR, defined as the number of maternal deaths per 100,000 live births. Since many patients at the university hospital had been referred after being delivered at other hospitals, we also calculated the MNMR and MMR for women delivered only at the university hospital and only at the regional hospital, excluding women delivered elsewhere. The mortality index was calculated by dividing the number of maternal deaths by the sum of MNM events and maternal deaths [25]. The proportion of MNM and death attributed to CS complications was calculated by dividing the number of MNM events and deaths with strong or moderate association with CS by the total number of MNM events and deaths at the two hospitals. To estimate the risk of CS complications per 1,000 operations, we divided the number of MNM events and deaths with strong or moderate association with CS by the total number of CSs at the two facilities. The risk ratio of life-threatening CS complications at the university hospital compared to the regional hospital was also calculated. For all estimates, we computed the 95% CI. Clearance to conduct the study was obtained from the Ethics Board at Muhimbili University for Health and Allied Sciences (reference number MU/RP/AEC/Vol. XIII) on 23 December 2011. A research permit was given by the Tanzania Commission for Science and Technology (reference number 2012-39-NA-2011-191) on 17 February 2012. Permission to collect data was obtained from the administrations at Muhimbili National Hospital and Temeke Hospital. Informed consent from patients to use the information was not obtained. Data entered into the database was coded and rendered anonymous as to patient identity.