Background: Chronic malnutrition or stunting among children under 5 years old is affected by several household environmental factors, such as food insecurity, disease burden, and poverty. However, not all children experience stunting even in food insecure conditions. To seek a solution at the local level for preventing stunting, a cross-sectional study was conducted in southeastern Kenya, an area with a high level of food insecurity. Methods: The study was based on a cohort organized to monitor the anthropometric status of children. A structured questionnaire collected information on the following: demographic characteristics, household food security based on the Household Food Insecurity Access Scale (HFIAS), household socioeconomic status (SES), and child health status. The associations between stunting and potential predictors were examined by bivariate and multivariate stepwise logistic regression analyses. Furthermore, analyses stratified by level of food security were conducted to specify factors associated with child stunting in different food insecure groups. Results: Among 404 children, the prevalence of stunting was 23.3%. The percentage of households with severe food insecurity was 62.5%. In multivariative analysis, there was no statistically significant association with child stunting. However, further analyses conducted separately according to level of food security showed the following significant associations: in the severely food insecure households, feeding tea/porridge with milk (adjusted Odds Ratio [aOR]: 3.22; 95% Confidence Interval [95% CI]: 1.43-7.25); age 2 to 3 years compared with 0 to 5 months old (aOR: 4.04; 95% CI: 1.01-16.14); in households without severe food insecurity, animal rearing (aOR: 3.24; 95% CI: 1.04-10.07); SES with lowest status as reference (aOR range: from 0.13 to 0.22). The number of siblings younger than school age was not significantly associated, but was marginally associated in the latter household group (aOR: 2.81; 95% CI: 0.92-8.58). Conclusions: Our results suggest that measures against childhood stunting should be optimized according to food security level observed in each community.
A cross-sectional study was conducted in Kwale District in the Coast Province of Kenya in 2012, using a cohort nested to the Health and Demographic Surveillance System (HDSS) program, which follows about 50,000 residents periodically, in collaboration with Nagasaki University and the Kenya Medical Research Institute [20]. In this cohort, we recruited children under 5 years old and their caregivers, including non-biological mothers, from households located within a radius of 2.2 km from the Kizibe Health Center, one of the health centers in the HDSS program area. The radius was set in consideration of accessibility for children and their caregivers to the surveys in the nested-cohort study. We took into consideration the estimated sampling size (438 children) for a 2 sample comparison of proportions calculated in the study design stage assuming that 10% of children would become stunted during the observation period and there would be twice as many children with stunting in the comparison group, which has a factor (exposure) with a power of 80% and a significance level of 5% (2-tailed). This cohort program measured several indices, including anthropometric measurements such as height and weight, and asked questions of mothers related to health status and dietary intake. The measurements were to take place 3 times per year between 2011 and 2014. In this cross-sectional study, a structured questionnaire was additionally administered as part of the follow-up surveys of the cohort to investigate the relationship between intra-household environment and child nutritional status. During the survey period in 2012, 653 households were registered within a 2.2-km radius from the health center of the HDSS program; and among them, 516 children less than 5 years old were identified in 360 households. After carrying out a pre-test to revise the questionnaire for suitability, we conducted interviews of the caregivers by trained local investigators in the Kiswahili language at the health center. The interview required approximately 20 minutes to complete. The structured questionnaire consisted of the following variables: demographic characteristics; socioeconomic status; household food security; child health status, such as breastfeeding behavior and illness in the past 2 weeks including jigger flea (Tunga penetrans) infection; caregiver’s perception of child’s growth; and caregiver’s household chores as a proximal factor of availability for child rearing. The household food security level was measured using the Household Food Insecurity Access Scale (HFIAS) with scores ranging from 0 to 27 by household level [21]. The HFIAS scores obtained from households were categorized into 4 levels of food insecurity, namely, “food secure,” “mildly food insecure,” “moderately food insecure,” and “severely food insecure,” based on the HFIAS guideline [22]. The household socioeconomic status (SES) was parameterized by the principle component analysis (PCA) method using house properties confirmed by the questionnaire: property owned; source of drinking water; type of toilet facility; and type of flooring, wall material, and roof material. The items of household property were selected according to the Demographic Health Survey (DHS) [19]. The score in the first PCA component was used as an asset index of SES status for each household [23]. According to the PCA-based asset index, households were divided into 4 groups; the first quartile SES group was poorest and the fourth quartile SES group was richest in the study area. For data validation, Cronbach’s alpha coefficient, which is a measure of the internal consistency of a scale, was used to confirm the reliability of the HFIAS and household SES measure. An alpha value of more than 0.7 indicates that the measure is acceptable. Child age was confirmed using his/her maternal and child health (MCH) handbook or by the response from the caregiver if the MCH handbook was not available. Anthropometric measurement data were obtained from the child cohort dataset. In the child cohort study, height was measured by a length scale (Seca GmbH & Co.Kg, Germany). Weight was measured using trouser for baby weighing scale (G.S.T. Corporation, India) and portable electronic scale (Guangzhou Weiheng Electronics Co., Ltd, China) for babies; and KRUPS Baby Cum Child Weighing Scale (Doctor Beci Ram & Sons [MFG.], India) for children who could stand. For measuring the weight of caregivers a Tanita THD-650 scale (Tanita, Japan) was used. Chronic malnutrition (stunting) of children was defined as z-score below 2 standard deviations(SD) from the mean for length or height for age according to the Child Growth Standards published by the WHO in 2006 [6]. For this study, those who had a z-score above −2 SD were defined as children who did not have stunting. We excluded the following children from the analysis: those whose caregivers were unable to answer the questions due to hearing disability; those who were severely sick; and those whose birth date were not appropriate or unclear. Because 72.3% of children in this study were born at home according to our survey data, some birth dates were not clearly recorded. The association between potential predictors (child and caregiver characteristics, intra-household environment, food intake, and health history) and stunting status was determined by univariate logistic regression analyses. Because some children belong to the same household and may be correlated, cluster options by household were incorporated in the logistic regression. Multiple logistic regression analysis was also conducted to control confounding factors by backward stepwise selection with 0.2 of significant level of removal from the model as well as cluster option by household. Additionally, to identify associated factors of childhood stunting separately in severe and non-severe food insecurity groups, the analyses were independently conducted for the 2 groups in the same statistical manner. Stata statistical software (version 12.0: Stata Corporation, TX, USA) was used for data cleansing and data analyses. This study was approved by the Ethics Committee of Nagasaki University and authorized as a sub-study of the cohort study by the Ethical Review Committee of the Kenya Medical Research Institute (KEMRI SSC No.1964). Study permission was also obtained from the National Council for Science and Technology (NCST) in Kenya (Research Permit No. NCST/RCD/12A/012/59). We explained the study objectives and obtained written informed consent from all participants before collecting data. Participants were informed that participation in this study was voluntary and that they could stop participating at any time without experiencing negative consequences.
N/A