The first aim of the study is to assess the distribution of HIV-1 RNA levels in subtype C infection. Among 4,348 drug-naïve HIV-positive individuals participating in clinical studies in Botswana, the median baseline plasma HIV-1 RNA levels differed between the general population cohorts (4.1-4.2 log10) and cART-initiating cohorts (5.1-5.3 log10) by about one log10. The proportion of individuals with high (≥50,000 (4.7 log10) copies/ml) HIV-1 RNA levels ranged from 24%-28% in the general HIV-positive population cohorts to 65%-83% in cART-initiating cohorts. The second aim is to estimate the proportion of individuals who maintain high HIV-1 RNA levels for an extended time and the duration of this period. For this analysis, we estimate the proportion of individuals who could be identified by repeated 6- vs. 12-month-interval HIV testing, as well as the potential reduction of HIV transmission time that can be achieved by testing and ARV treating. Longitudinal analysis of 42 seroconverters revealed that 33% (95% CI: 20%-50%) of individuals maintain high HIV-1 RNA levels for at least 180 days post seroconversion (p/s) and the median duration of high viral load period was 350 (269; 428) days p/s. We found that it would be possible to identify all HIV-infected individuals with viral load ≥50,000 (4.7 log10) copies/ml using repeated six-month-interval HIV testing. Assuming individuals with high viral load initiate cART after being identified, the period of high transmissibility due to high viral load can potentially be reduced by 77% (95% CI: 71%-82%). Therefore, if HIV-infected individuals maintaining high levels of plasma HIV-1 RNA for extended period of time contribute disproportionally to HIV transmission, a modified “test-and-treat” strategy targeting such individuals by repeated HIV testing (followed by initiation of cART) might be a useful public health strategy for mitigating the HIV epidemic in some communities. © 2010 Novitsky et al.
This study was conducted according to the principles expressed in the Declaration of Helsinki. The study was approved by the Institutional Review Boards of Botswana and the Harvard School of Public Health. All patients provided written informed consent for the collection of samples and subsequent analysis. Description of the Botswana–Harvard Partnership (BHP) studies has been presented elsewhere [30]. For the purposes of this study, baseline data were used from the following seven BHP cohorts that were monitored including extensive clinical and laboratory follow up for prolonged periods. The time of enrollment to each cohort is shown in Supplementary Table S1. Three types of cohorts were distinguished: general population, MTCT, and cART-initiating cohorts. MTCT cohort BHP004, Mashi study: Prevention of milk-borne transmission of HIV-1C in Botswana (completed). The main goals of this project were two-fold. First, to assess whether the addition of a single dose of maternal nevirapine (NVP) at labor along with zidovudine (AZT or ZDV) from week 34 of gestation provides additional benefit in reducing HIV transmission from mother to child. The study was amended to determine whether maternal NVP (per HIVNET 012 protocol) is necessary in the setting of maternal ZDV from 34 weeks gestation through delivery and single-dose prophylactic infant NVP (at birth) plus ZDV (from birth to 4 weeks) for the reduction of HIV transmission from mother to child. The second goal was to determine the effectiveness and safety of prophylactic AZT to breast-feeding infants to prevent milk-borne HIV transmission. The baseline HIV RNA load in plasma was available for 1,189 Mashi participants. Results of the Mashi study were presented elsewhere [11], [31], [32], [33], [34]. cART-initiating cohort BHP007, Tshepo study: The adult antiretroviral treatment and drug resistance study (completed). The study was an open-label, randomized combination ARV study with a multi-factorial, 3x2x2 design. The factors included a comparison of three NRTI combinations (ZDV/lamivudine (3TC), ZDV/didanosine (ddI), and 3TC/stavudine (d4T)), a comparison of two NNRTIs (NVP and efavirenz (EFV)), and a comparison between two adherence strategies (standard of care (SOC) versus an intensified adherence strategy, SOC plus community-based supervision). The baseline HIV RNA load in plasma was available for 631 Tshepo participants. Results of the Tshepo study were presented elsewhere [35], [36], [37]. General population cohort BHP010, Botsogo study: A natural history of HIV-1 subtype C disease progression study (completed). This observational study gathered data on HIV-1 subtype C disease progression from ARV-naïve HIV-infected individuals with CD4+ cell count ≥400/mm3. The objectives of the study were (i) to determine the kinetics of HIV-1 subtype C disease progression (ii) to estimate the rate of CD4+ cell decline, and (iii) to analyze the time to first HIV-associated or AIDS-defining condition or death in persons with initial CD4+ cell count ≥400/mm3. The baseline HIV RNA load in plasma was available for 444 Botsogo participants. General population cohort BHP011, Dikotlana study: Micronutrient therapy and HIV in Botswana (completed). The study was a randomized, multifactorial, double-blind placebo-controlled trial to determine the efficacy of micronutrient supplementation in improving immune function and preventing early mortality in HIV-1-infected adults whose CD4+ were >350 cells/mm3. The design compared the efficacy of multivitamins, or selenium, or the combination of multivitamins and selenium to a placebo supplementation. The baseline HIV RNA load in plasma was available for 842 Dikotlana participants. MTCT cohort BHP016, Mma Bana study: A randomized trial of ZDV + 3TC + lopinavir/ritonavir vs. ZDV + 3TC + abacavir for virologic efficacy and the prevention of MTCT among breastfeeding women having CD4+>200 cells/mm3 in Botswana (ongoing). This study involved cART initiation by week 28 of gestation in breastfeeding women having CD4+>200 cells/mm3. The third group included pregnant women who received ZDV + 3TC (given as co-formulated Combivir™ or Lamzid™) + NVP as the National Program regimen because they had CD4+ τ), the probability of X+Y being greater than τ. The potential reduction in the period of high HIV transmissibility in individuals with high viral load that can be achieved by repeated HIV testing and ARV treatment was approximated by E(X+Y-τ|X+Y-τ ≥0), the expected value of X+Y-τ when it is positive. Confidence intervals for these two quantities were derived using the bootstrap method [46]. All reported p-values are 2-sided and not adjusted for multiple comparisons.