Introduction: Transmission through breastfeeding remains important for mother-to-child transmission (MTCT) in resource-limited settings. We quantify the relationship between cell-free (RNA) and cell-associated (DNA) shedding of HIV-1 virus in breastmilk and the risk of postnatal HIV-1 transmission in the first 6 months postpartum. Materials and Methods: Thirty-six HIV-positive mothers who transmitted HIV-1 by breastfeeding were matched to 36 non-transmitting HIV-1 infected mothers in a case-control study nested in a cohort of HIV-infected women. RNA and DNA were quantified in the same breastmilk sample taken at 6 weeks and 6 months. Cox regression analysis assessed the association between cell-free and cell-associated virus levels and risk of postnatal HIV-1 transmission. Results: There were higher median levels of cell-free than cell-associated HIV-1 virus (per ml) in breastmilk at 6 weeks and 6 months. Multivariably, adjusting for antenatal CD4 count and maternal plasma viral load, at 6 weeks, each 10-fold increase in cell-free or cell-associated levels (per ml) was significantly associated with HIV-1 transmission but stronger for cell-associated than cell-free levels [2.47 (95% CI 1.33-4.59) vs. aHR 1.52 (95% CI, 1.17-1.96), respectively]. At 6 months, cell-free and cell-associated levels (per ml) in breastmilk remained significantly associated with HIV-1 transmission but was stronger for cell-free than cell-associated levels [aHR 2.53 (95% CI 1.64-3.92) vs. 1.73 (95% CI 0.94-3.19), respectively]. Conclusions: The findings suggest that cell-associated virus level (per ml) is more important for early postpartum HIV-1 transmission (at 6 weeks) than cell-free virus. As cell-associated virus levels have been consistently detected in breastmilk despite antiretroviral therapy, this highlights a potential challenge for resource-limited settings to achieve the UNAIDS goal for 2015 of eliminating vertical transmission. More studies would further knowledge on mechanisms of HIV-1 transmission and help develop more effective drugs during lactation. © 2012 Ndirangu et al.
HIV-infected and HIV-uninfected women were enrolled in an intervention cohort study, between August 2001 and September 2004 [22], [23], to investigate whether breastfeeding in a high HIV prevalence, poor rural setting in South Africa could be made safe in terms of both HIV-1 transmission and infant morbidity and mortality. Weekly home visits documented infant feeding and morbidity while clinic follow-up of the infants and mothers were scheduled monthly between 6 weeks and 9 months. Ten milliliters of breastmilk were collected from each breast for HIV-infected and uninfected breastfeeding mothers at each scheduled clinic visit. Samples were transported and maintained at 4 degrees Celsius overnight and stored long-term as whole breastmilk at minus 80 degrees Celsius until testing. A dried blood spot for each infant was collected at each visit and stored at minus 20 degrees Celsius. HIV-1 RNA quantification was performed using the Nuclisens HIV-1 QT assay (Organon Teknika, Boxtel, Netherlands) and Nuclisens EasyQ HIV-1 assay (Biomerieux, Boxtel, Netherlands) with a sensitivity of 80 copies HIV-1 RNA per ml of blood (equivalent to 1600 copies HIV-1 RNA per 50 µl dried blood spot) [24]. Rates of MTCT of HIV-1 during breastfeeding have been described previously [23]. Children were considered infected through breastfeeding if they had a negative HIV polymerase chain reaction (PCR) assay at 6 weeks of age and a positive PCR at any time thereafter. Single-dose nevirapine (sdNVP) for use during labour/delivery was provided for all HIV-infected women and to their newborns; ART for treatment or as MTCT prophylaxis from early in pregnancy or during the postnatal period was not available in the public health setting at the time of this study. Maternal viral load and CD4 count were collected antenatally. The project was approved by the Biomedical Ethics Review Committee (BREC) at the University of KwaZulu-Natal South Africa. A case-control study was nested in this intervention cohort [22]. The primary study identified 42 babies who had acquired HIV infection postnatally (as diagnosed by PCR conversion) [23]. Our study includes 36 postnatally infected children who had both cell-free and cell-associated data on samples at 6 weeks and 6 months, and who were matched to controls. Cases and controls were matched (in a 1∶1 ratio) on infant age at breastmilk sampling with a maximum allowance of 2 weeks of the sample date of the case to reduce potential bias of varying concentrations of breastmilk RNA and DNA over time [25]. Cases were mothers who transmitted HIV-1 to their infants through breastmilk between 6 and 28 weeks postpartum while controls were non-transmitting HIV-1 infected mothers. Transmission was estimated to have occurred at the midpoint between an infant’s last HIV negative PCR test and first positive result. Infants were included if they had at least one cell-free and one cell-associated breastmilk sample available close to the estimated time of transmission (ETT). Breastmilk samples from both breasts, for postnatal transmitters and controls had DNA quantified twice (at 6 weeks and 6 months) and RNA at multiple time points before 6 months. Thirty-six transmitting mothers had 85 samples tested for HIV-1 RNA and DNA in both left and right breast; 36 control mothers had 81 samples. This study differs from the previous study which investigated the association between postnatal HIV acquisition at 6–28 weeks and cumulative cell-free HIV exposure (i.e. the overall amount of cell-free viral particles ingested by the infant during breastfeeding, upto infection or equivalent age of control) [19]. The volume of milk ingested per day was estimated by pattern of feeding and the probability of transmission estimated per liter of breastmilk ingested. However, that study did not access the influence of cell-associated virus integrated in latent T cells on postnatal transmission. In contrast, the current study presents the association between cell-free and cell-associated shedding of HIV-1 virus in breastmilk and postnatal HIV-1 transmission. Cell-free HIV-1 quantification on breastmilk samples was performed as described previously [19]. Cell-associated HIV-1 quantification on whole breastmilk samples was performed using the Generic HIV DNA Cell assay (Biocentric, Bandol, France). Breastmilk samples were thawed at room temperature and vortex mixed. A maximum of 1.5 ml (range 0.5–1.5 ml) of breastmilk was aliquoted into a 2 ml microtube, centrifuged at 2000 g for 15 min and the lactoserum-lipid layer was removed to a 1.5 ml microtube. The lactoserum-lipid fraction was stored at −80°C. The remaining breastmilk pellet was used in the HIV DNA real time PCR (qPCR) assay. RNA was isolated from 500 µL of lactoserum with use of the magnetic particle-based ASPS method (Abbott), and HIV load was quantified using the Generic HIV Charge Virale assay (Biocentric, Bandol, France) on the MJ MiniOpticon quantitative PCR detection platform (Biorad), with a sensitivity of 375 copies per mL of lactoserum [26]. This method enabled accurate assessment of cell-free viral load entrapped by lipids [27]. The Qiagen DNA Mini Kit was used to isolate total DNA from the dry breastmilk pellet according to the manufacturer’s instructions. Total DNA concentration was measured with the Nanodrop instrument using 1 µl of sample. Samples with a DNA concentration of 50 ng/µl an appropriate dilution of up to 1∶10 was performed. The total reaction volume was 50 µl with a 20 µl sample input volume, according to manufacturer’s instructions. The human GAPDH housekeeping gene (Primer_F : 5′-AAGGTCGGAGTCAACGGATT-3′; Primer_R R: 5′-CTCCTGGAAGATGGTGATGG-3′) was quantified by real-time PCR using SybrGreen to verify the integrity of the extracted DNA, to determine the presence or absence of inhibitors/contaminants, and to act as a reference gene for quantitative analysis [28]–[30]. Quantifying the host gene GAPDH provided an estimate of the number of cells per PCR, allowing expression of the number of copies of HIV per 106 cells in our sample despite not having a cell count. The analyses included transmitters and controls with both cell-free and cell-associated results available from the same breastmilk sample at 6 weeks and 6 months. When the 6 months results were more than 4 weeks after transmission, the RNA result closest to the transmission was used (RNA was quantified at multiple time points) while the average between the two DNA results was calculated, otherwise the result at 6 months was used. Breastmilk HIV-1 RNA viral load levels below the lower detectable limit (375 copies/ml) were assigned a value at the midpoint between this and zero (187.5 copies/ml) [31], [32]. Breastmilk HIV-1 DNA samples below the lower detectable limit were normalized for the amount of cells used to isolate the DNA (based on the GAPDH measurement which is different for each cell) [33]. No breastmilk samples were excluded because of low cell counts as all samples had DNA values above zero. Cell-free and cell-associated virus levels were analyzed on a decimal logarithmic scale to base-10 [11], [18]. Counts of DNA quantified per million cells were converted to concentrations of DNA per milliliter by multiplying by 0.08×106 at 6 weeks and 0.05×106 at 6 months breastmilk cells per milliliter, as suggested in previous studies [11], [34]. Chi-square test assessed differences in categorical variables while Wilcoxon rank-sum test was used for non-parametric analysis of continuous variables. Spearman rank correlation estimated correlation between continuous variables. Cox regression models, pooling multiple measurements from the left and right breastmilk samples, assessed the association between breastmilk cell-free and cell-associated virus levels and risk of postnatal HIV-1 transmission. Observation time was taken from 6 weeks of age (last negative HIV PCR assay) to the estimated time of HIV-1 infection or end of observation (6 months of age), whichever came first. Multivariable models included maternal antenatal CD4 cell count and plasma RNA [18], and were stratified by time (6 weeks and 6 months) because there are more infected cells in early than mature breastmilk [11]. The model adjusting for both antenatal CD4 count and viral load represented the best fit of the data using BIC and was thus retained as the final model. Data were analysed using Stata Version 11.2 (2009 StataCorp, College Station, Texas, USA).
N/A