Introduction Anemia, syphilis and HIV are high burden diseases among pregnant women in sub-Saharan Africa. A quasi-experimental study was conducted in four health facilities in Southern Mozambique to evaluate the effect of point-of-care technologies for hemoglobin quantification, syphilis testing and CD4+ T-cell enumeration performed within maternal and child health services on testing and treatment coverage, and assessing acceptability by health workers. Methods Demographic and testing data on women attending first antenatal care services were extracted from existing records, before (2011; n = 865) and after (2012; n = 808) introduction of point-of-care testing. Study outcomes per health facility were compared using z-tests (categorical variables) and Wilcoxon rank-sum test (continuous variables), while inverse variance weights were used to adjust for possible cluster effects in the pooled analysis. A structured acceptability-assessment interview was conducted with health workers before (n= 22) and after (n = 19). Results After implementation of point-of-care testing, there was no significant change in uptake of overall hemoglobin screening (67.9% to 83.0%; p = 0.229), syphilis screening (80.8% to 87.0%; p = 0.282) and CD4+ T-cell testing (84.9% to 83.5%; p = 0.930). Initiation of antiretroviral therapy for treatment eligible women was similar in the weighted analysis before and after, with variability among the sites. Time from HIV diagnosis to treatment initiation decreased (median of 44 days to 17 days; p<0.0001). A generally good acceptability for point-of-care testing was seen among health workers. Conclusions Point-of-care CD4+ T-cell enumeration resulted in a decreased time to initiation of antiretroviral therapy among treatment eligible women, without significant increase in testing coverage. Overall hemoglobin and syphilis screening increased. Despite the perception that point-of-care technologies increase access to health services, the variability in results indicate the potential for detrimental effects in some settings. Local context needs to be considered and services restructured to accommodate innovative technologies in order to improve service delivery to expectant mothers.
A quasi-experimental operational research study was conducted in four rural public health facilities in two provinces (Maputo and Gaza) in southern Mozambique. The sites (Moamba, Macia, Magude and Marracuene) were purposively selected due to the high volume of antenatal patients seeking MCH services and high prevalence of HIV, and for being health facilities supported by the Elizabeth Glaser Pediatric AIDS Foundation at the time of the study approval. Data were extracted from existing clinical charts and registers for two groups of women; the first group attended ANC before introduction of POC technologies for CD4+ T cell enumeration, hemoglobin and syphilis screening, and the second group after implementation of POC testing. Before introduction of POC testing, hemoglobin and syphilis testing were performed at the laboratory associated with the health facility using Lovibond (Orbeco-Hellige, Florida, US) and Rapid Plasma Reagin (RPR) (Biotec Lab, Suffolk, UK), respectively. Laboratories at these health facilities possessed very basic infrastructure and equipment, were staffed by 3–4 professionals and had relatively inefficient linkages to the corresponding referral laboratory. Nurses at the antenatal consultation gave a test request to pregnant women, who then queued at the laboratory, located in a different part of the same health facility, for blood collection. Once blood was collected, pregnant women waited for their results at the laboratory. After results were returned to the pregnant women by laboratory staff, women went back to the antenatal consultation where they would wait until seen by the nurse. Although the result for hemoglobin and syphilis was available on the same day prior to this study, the inefficient flow was burdensome and time-consuming for the client. In addition, pregnant women had to provide a separate specimen for CD4 counting as described below. Blood samples for CD4+ T cell enumeration were sent weekly to the referral laboratory, where testing was performed using the FACsCalibur (Becton Dickinson, San Jose, CA, USA). Nurses made an appointment for blood collection for CD4 counting on a fixed day, in general requiring therefore an extra visit. On the specimen collection day, women queued at the MCH clinic usually at very early hours of the day. The result on the CD4 counting would only be available on yet a different day, requiring an additional visit to the health facility. Antiretroviral therapy was initiated if CD4+ T-cell count was below 350cells/μL, the standard national policy at the time of the study. Initiation was done at the ANC clinic as soon as possible after determination of eligibility. The POC technologies introduced in January 2012 were: 1) Hemocue 201+ (Hemocue AB, Angelholm, Sweden) for hemoglobin measurement; 2) Bioline 3.0 syphilis (Standard Diagnostics Inc., South-Korea) rapid test for syphilis diagnosis; and 3) Alere PIMA (Alere Inc., Waltham, Massachusetts, USA) for CD4+ T cell enumeration. All these technologies were placed within the MCH services. At each health facility, MCH staff, laboratory staff and the medical director of the health facility were trained on the study objectives and procedures. The change in patient flow due to the implementation of POC technologies was discussed and arranged with clinic staff input within the protocol training. Two nurses within each health facility were trained to perform the tests for routine care within their MCH services. In one HF (Macia), a clinical officer had been trained for CD4+ T-cell enumeration prior to the study and continued supporting that service. After the training, the three POC tests were exclusively performed by the MCH nurses at the clinic. Women who attended their first ANC visit between January and December 2011 for the pre-POC evaluation, and between January and June 2012 for the post-POC evaluation, were eligible for the study. HIV-positive women were excluded from the analysis on coverage of CD4+ T-cell count enumeration and ART initiation if they were on ART at first ANC visit. The sample size for HIV-positive women was calculated separately for each of the health facilities based on a hypothesized 25% increase in ART uptake, using an 80% power and an adjustment for incompleteness of 5%. As data on uptake of hemoglobin and syphilis testing was limited at the time of protocol development, the study estimated to include an equal number of HIV-negative women. For the pre-POC period, files were randomly selected for review using systematic sampling. For the short post-POC evaluation, all files of the HIV-positive women were included in order to reach the desired sample size while for HIV-negative women files were randomly selected using systematic sampling. Data were extracted from antenatal care cards, PMTCT register books and laboratory register books. HIV patient files were used to cross-check laboratory results and ART initiation. Test coverage was defined as a test result being available in either of 3 places: laboratory registry, clinic registry or antenatal cards. Time from HIV diagnosis and each step of the laboratory services up to ART initiation was measured: i) Diagnosis of HIV as written on the antenatal cards; ii) Registration of CD4 analysis request at the MCH clinic; iii) Registration of blood collection at the MCH clinic; iv) Registration of the analysis at the laboratory as written on the CD4 result printout; v) Registration of the results at the clinic as written on the PMTCT book; vi) Registration of results in patient file at the MCH clinic. Structured interviews were conducted with MCH nurses and laboratory technicians to evaluate perceived and then actual acceptability of MCH nurses performing POC technologies, before and after introduction, respectively. The MCH nurses and laboratory technicians were informed about the study by the study team and interviews were conducted with those who provided consent. Data were extracted onto data extraction forms and entered into a Microsoft Access database. Data were analyzed using STATA Version SE/11.1 (Stata Corp, Texas, US). Study outcomes were laboratory testing and treatment uptake for syphilis for all pregnant women, testing uptake for anemia for all pregnant women, uptake of immunological staging for HIV positive pregnant women and uptake of ART treatment for eligible women. As the study was a retrospective routine data review, being screened was defined as having a test result documented in the patient file. Eligibility for ART for the purpose of the study was defined as having a CD4+ T cell count below 351 cells/μL. Anemia is defined as having a hemoglobin <8mg/dl. For each health facility, we estimated the proportion with test before and after introduction of POC technologies and compared two proportions using z-tests. In the pooled analysis, we estimated the overall proportions before and after introduction by pooling across health facilities using an inverse-variance weighted estimate. The overall effect of the POC was estimated by pooling the health facility specific effects using inverse variance weights, a technique based on the random effects model used in meta-analysis. The random effects model accounts for potential intra-cluster (health facility) correlation in the estimation of robust standard errors. The protocol was approved by the National Committee for Health Bioethics of the Ministry of Health, Mozambique and by the Ethics Committee of the George Washington University, Washington DC, US. Signed informed consent was obtained from all health worker interviewees. A waiver of signed consent was obtained from the Ethics Committees for performing chart reviews of participating pregnant women. Patient information was anonymized and de-identified prior to analysis.
N/A