Background: Nearly three-fourths of pregnant women in Ethiopia give birth at home. However, the spatial pattern and spatial variables linked to home delivery in developing regions of Ethiopia have not yet been discovered. Thus, this study aimed to explore the geographical variation of home delivery and its determinants among women living in emerging (Afar, Somali, Gambella, and Benishangul-Gumuz) regions of Ethiopia, using geographically weighted regression analysis. Methods: Data were retrieved from the Demographic and Health Survey program’s official database (http://dhsprogram.com). In this study, a sample of 441 reproductive-age women in Ethiopia’s four emerging regions was used. Global and local statistical analyses and mapping were performed using ArcGIS version 10.6. A Bernoulli model was applied to analyze the purely spatial cluster discovery of home delivery. GWR version 4 was used to model spatial regression analysis. Results: The prevalence of home delivery in the emerging regions of Ethiopia was 76.9% (95% CI: 72.7%, 80.6%) and the spatial distribution of home delivery was clustered with global Moran’s I = 0.245. Getis-Ord analysis detected high-home birth practice among women in western parts of the Benishangul Gumz region, the Eastern part of the Gambela region, and the Southern and Central parts of the Afar region. Non-attendance of antenatal care, living in a male-headed household, perception of distance to a health facility as a big problem, residing in a rural area, and having a husband with no education significantly influenced home delivery in geographically weighted regression analysis. Conclusions: More than three-fourths of mothers in the developing regions of Ethiopia gave birth at home, where high-risk locations have been identified and the spatial distribution has been clustered. Thus, strengthening programs targeted to improve antenatal care service utilization and women’s empowerment is important in reducing home birth practice in the study area. Besides, supporting the existing health extension programs on community-based health education through home-to-home visits is also crucial in reaching women residing in rural settings.
The study was conducted in emerging regions (Afar, Somali, Gambella, and Benishangul-Gumuz regions) of Ethiopia. These regions are found mainly in lowland parts of the country and their main lifestyle depends on animal livestock and farming. The societies that exist in these areas are nomadic ethnic groups and highly moveable which are not suitable for the existing health system of the country [27, 34, 35]. As a result, these regions were not well realizing most of the health and development-related indicators compared to other developed regions of the country [36]. Besides, in these regions, maternal health care (antenatal care, skilled delivery care, postnatal care, and contraceptive) utilizations are influenced by socio-cultural and religious barriers [27, 30, 37, 38]. The data for this analysis were retrieved from the Demographic and Health Survey (DHS) program’s official database website (http://dhsprogram.com), which was collected from January 18, 2016, to June 27, 2016. A total of 441(weighted sample) women living in four emerging (Afar, Somali, Gambella, and Benishangul-Gumuz) regions of Ethiopia who had at least one live birth in the 5 years preceding the survey were included in this analysis [13]. The outcome variable for this study was home delivery which was dichotomized into “Yes = 1 (for women whose last childbirth occurred at home) and No = 0 (for women whose last childbirth took place at health facilities)”. The independent variables were the sex of household head, age of respondent, marital status, birth order, women’s education level, husband’s education level, wealth index, respondent’s occupation, husband’s occupation, religion, exposure to mass media, antenatal care visit, type of residence, and distance to the health facility. Sample allocation in the Ethiopian Demographic and Health Survey (EDHS) to different regions of the country as well as urban and rural areas was not proportional. Thus, this study applied sample weights to estimate proportions and frequencies to adjust disproportionate sampling and non-response. A full clarification of the weighting procedure was explained in the 2016 EDHS report [13]. The data cleaning was executed using Stata version 16.0 and MS-excel 2019. The spatial autocorrelation (Global Moran’s I) statistic was held to assess the pattern of home delivery whether it was dispersed, clustered, or randomly distributed in the study areas. Local Moran’s I measure positively correlated (High-High and Low-Low) clusters and outliers (High-Low: a higher value is surrounded primarily by lower values, and Low–High: a lower value is surrounded primarily by higher values). The detail about its statistical determination of cluster outlier is found in this literature [39, 40]. Gettis-Ord Gi* statistics were calculated to measure how spatial autocorrelation differs through the study location by computing Gi* statistics for each area. Z-score was calculated to ensure the statistical significance of clustering and the p-value was calculated. To determine the statistical significance of clustering, Gi Z-score was calculated. A positive z-score > 1.96 with significant p-values denotes hot-spot, while negative Z-score < − 1.96 with significant p-values denotes cold-spot [41, 42]. Spatial regression was done using both local and global analysis techniques [43–45]. Therefore, a first global geographical regression model was applied, and then a local geographical analysis to ensure the variability of coefficients across each cluster [46–48]. Then, the six assumptions recommended for spatial regression were checked with the respective tests [49, 50]. Koenker Bp test was also executed to check whether the model underwent fitted geographically weighted regression (GWR) or not. GWR was executed using GWR version 4. Variables with a p-value less than 0.05 were selected as the determinants of home delivery and described based on their coefficients. The data access was obtained from the Demographic and Health Survey (DHS) website (http://www.measuredhs.com) after getting registered and permission was got. The retrieved data were used for this registered research only. The data were treated as confidential and no determination was made to identify any household or individual respondent.
N/A