A poor understanding of malnutrition burden is a common reason for not prioritizing the care of small and nutritionally at-risk infants aged under-six months (infants u6m). We aimed to estimate the anthropometric deficit prevalence in infants u6m attending health centres, using the Composite Index of Anthropometric Failure (CIAF), and to assess the overlap of different individual indicators. We undertook a two-week survey of all infants u6m visiting 18 health centres in two zones of the Oromia region, Ethiopia. We measured weight, length, and MUAC (mid-upper arm circumference) and calculated weight-for-length (WLZ), length-for-age (LAZ), and weight-for-age z-scores (WAZ). Overall, 21.7% (95% CI: 19.2; 24.3) of infants u6m presented CIAF, and of these, 10.7% (95% CI: 8.93; 12.7) had multiple anthropometric deficits. Low MUAC overlapped with 47.5% (95% CI: 38.0; 57.3), 43.8% (95% CI: 34.9; 53.1), and 42.6% (95% CI: 36.3; 49.2) of the stunted, wasted, and CIAF prevalence, respectively. Underweight overlapped with 63.4% (95% CI: 53.6; 72.2), 52.7% (95% CI: 43.4; 61.7), and 59.6% (95% CI: 53.1; 65.9) of the stunted, wasted, and CIAF prevalence, respectively. Anthropometric deficits, single and multiple, are prevalent in infants attending health centres. WAZ overlaps more with other forms of anthropometric deficits than MUAC.
The study sites were in Deder woreda, East Hararge zone and in Jimma zone, Ethiopia. Though geographically separate, these are both located in the Oromia region. They were chosen because they are the sites of our future RCT. The study was implemented in 18 health centres, ten in Jimma zone and eight in Deder woreda. Jimma zone is one of the most populous areas of the Oromia Regional State, with a population of over 3 million people. Deder woreda has a population of some 315,000 people. Both sites have a high burden of malnutrition. Their main livelihood in the area is agriculture, petty trade of cash crops such as khat and coffee, fattening of oxen, and local casual labour. Jimma zone and Deder woreda have 124 and 8 health centres, respectively, each serving an average population of between 15,000 to 30,000. We undertook a health centre-based cross-sectional survey, surveying all infants u6m who attended the selected health centres for any reason over an average period of two weeks in each centre. Reasons for attendance included: being born at the health centre; immunization clinics; growth monitoring clinics; under-5 clinics (where children present with a variety of acute illnesses). We collected data from 1060 infants u6m between 12 October 2020 and 29 January 2021. We lacked prior information on how many infants u6m attending the health centres would have anthropometric deficits. Consequently, to estimate a sufficiently robust sample, we assumed a 50% prevalence of anthropometric deficit in infants u6m, and a 3% precision [22]. Using these assumptions, we estimated that we needed a sample of 1067 infants u6m, an average of 60 infants u6m per health centre. To plan for field logistics, we assumed that each health centre would have an average attendance of 30 infants u6m per week and set the average duration of data collection for each health centre to a two-week period. In Deder woreda, we included all eight available health centres. In Jimma zone, we selected ten out of the 124 available health centres as follows: First, we undertook a register review in all 124 health centres to collect eligibility information on ease of access and patient load. We then excluded 60 health centres from which we were unable to gather complete eligibility data. We further excluded seven health centres that were difficult to access. Lastly, we ranked the remaining 57 health centres according to patient load and randomly selected ten centres from the top 50%. We undertook training for the teams of enumerators and supervisors, one team in Jimma zone and one in Deder woreda, to ensure consistency and a high quality of data collection. Our training included learning how to obtain anthropometric measurements (e.g., weight, length, MUAC), assess infant feeding practices, obtain economic and demographic data, use digital data gathering devices (DDGs), as well as to obtain informed consent and clinical history data. Our training also included the piloting of data collection, prior to initiating the actual survey data collection, to ensure the collection of high-quality data and to identify and correct any sources of data collection errors. During the pilot, we also assessed field challenges of the survey tool for final editing. All data were collected using an electronic questionnaire designed using the REDCap (Research Electronic Data Capture) project system (https://redcap.am.lshtm.ac.uk/redcap/ accessed on 14 May 2021). At the household level, we obtained information about the sex and formal education of the household head, household size, number of dependent children aged < 18 years. From mothers or primary caregivers, we obtained information on age, formal education, and religion. From all infants u6m, we obtained sex and date of birth data. We asked mothers/caregivers to recall their infants’ age in weeks. We asked whether the infant was born singleton or was a twin or a triplet; the infant’s birth order; how many siblings aged < 18 years they have, and whether any of them had died recently. We collected data on infants’ feeding practices in the past 24 h. We asked about current and past breastfeeding and whether they received any liquids, i.e., water, milk, juice, broth, runny porridge, yoghurt, or other liquids apart from those mentioned. We asked whether they were fed using a bottle and whether they received any solid, semi-solid, or soft foods [23]. We measured weight with the infant undressed using a digital weight scale (Seca 354) to the nearest 5 g if weighing 5 or 6 or 5 or <−5 for WAZ, LAZ, and WLZ values, respectively. We defined underweight, stunted, and wasted as WAZ, LAZ, and WLZ < −2, respectively. We used CIAF to assess overall malnutrition prevalence in infants u6m [18]. We defined CIAF as all infants u6m that were either underweight, stunted, or wasted and we generated the following subcategories: wasted only; wasted and underweight; wasted, stunted and underweight; stunted and underweight; stunted only; and underweight only [18]. We defined the Composite Index of Severe Anthropometric Failure (CISAF) as all infants u6m that were severely underweight, stunted, or wasted, as defined by a WAZ, LAZ, or WLZ < −3, respectively [27]. To explore the overlap between MUAC and CIAF in infants, we explored the use of different thresholds to define low MUAC: MUAC < 11.5 cm; MUAC < 11.0 cm if aged < 6 weeks and <11.5 thereafter; MUAC < 11.0 cm if aged < 7 weeks and <11.5 thereafter; MUAC < 11.0 cm if aged < 13 weeks and <11.5 thereafter; MUAC < 11.0 cm if aged < 17 weeks and <11.5 thereafter; MUAC < 11.0 cm; and MUAC < 10.5 cm. These thresholds were chosen to match those in past/present use in older children; and the age thresholds to match timings of immunization clinic visits when future programmes would use MUAC for the identification of at-risk infants u6m. For the analysis, we excluded infants u6m for which we could not estimate all anthropometric indices as they had weight or length missing, or their lengths were <45 cm, or if one or more of their anthropometric indices were marked as outliers. In addition, we excluded infants from the assessment of overlap between different anthropometric indicators if they presented with oedema. We estimated means or proportions, along with the 95% confidence intervals (95% CI), for all variables. We compared basic characteristics between Jimma and Deder using t-test and z-test with the lincom Stata command. To determine the prevalence of different anthropometric deficits in infants, we estimated summary statistics for all anthropometric variables using the svy Stata commands that account for the survey design.