In egg laying species, breeding females may adjust the allocation of nutrients or other substances into eggs in order to maximise offspring or maternal fitness. Cooperatively breeding species offer a particularly interesting context in which to study maternal allocation because helpers create predictably improved conditions during offspring development. Some recent studies on cooperative species showed that females assisted by helpers produced smaller eggs, as the additional food brought by the helpers appeared to compensate for this reduction in egg size. However, it remains unclear how common this effect might be. Also currently unknown is whether females change egg composition when assisted by helpers. This effect is predicted by current maternal allocation theory, but has not been previously investigated. We studied egg mass and contents in sociable weavers (Philetairus socius). We found that egg mass decreased with group size, while fledgling mass did not vary, suggesting that helpers may compensate for the reduced investment in eggs. We found no differences in eggs’ carotenoid contents, but females assisted by helpers produced eggs with lower hormonal content, specifically testosterone, androstenedione (A4) and corticosterone levels. Taken together, these results suggest that the environment created by helpers can influence maternal allocation and potentially offspring phenotypes. © 2013 Paquet et al.
The work was conducted between September 2010 and February 2011 at Benfontein Nature Reserve in the Northern Cape province of South Africa (28°52′ S, 24°50′E) with the permission of Northern Cape Nature Conservation. The Ethics Committee of the University of Cape Town specifically approved this study (permit number: 5869-2009). De Beers Consolidated Mines provided access to Benfontein Game Reserve. The sociable weaver is a colonial passerine endemic to the semi-arid acacia savannahs of southern Africa [62], [63]. Sociable weavers build massive communal nests containing several independent nest chambers that are used for breeding and roosting. They are facultative cooperative breeders, breeding in pairs or with up to five helpers (mean group size 3.15 birds for this study, however the proportion of birds breeding in groups varies from ca. 30–80% between years [60]). Helpers are mainly offspring of one or both breeders (93%), although a small number of unrelated birds can also help [60]. Both sexes help, but in a previous study helpers older than one year were found to be only males [64]. [60]. Before the breeding season 503 individuals roosting in 14 colonies were captured and marked with a unique colour ring combination (see [65] for more details on the captures). Then to determine the onset of reproduction, all nest chambers in these study colonies (i.e. approximately 460) were inspected every 3 days. These chambers were marked with a numbered plastic tag. As soon as the first eggs were found, colonies were inspected every day in order to mark every new egg laid (with a soft blunt pencil) and thereby know the laying sequence (one egg is laid per day). Sociable weavers usually lay 3–4 eggs (average clutch size is 3.3 [54]). Two days after the first egg in a given nest was laid we weighed all eggs in that clutch to the nearest 0.001 g with a digital Pesola balance (n = 252 eggs from 84 clutches). On this occasion, we collected the first egg laid in that clutch, which was kept frozen until further analyses (n = 84). Only the first egg was collected in order to allow the breeding activity to continue and hence to determine the breeding group size and identity of the individuals feeding at the nest from which we collected an egg. Nest chambers were checked the following day to weigh a possible fourth egg. To associate every chick with its egg we individually marked 74 hatchlings of 38 clutches (from which we previously collected the first egg) by removing specific down feathers from the neck and/or wings. These marks were still visible 9 days after hatching when the chicks were ringed with a uniquely numbered metal ring. Due to high nest predation by snakes the number of clutches used in this study decreased from the initial 84 to 28 that actually fledged young. We weighed these chicks at 17 days old (46 chicks from 28 clutches). To identify the individuals feeding at a given chamber and hence the breeding group size, we conducted 1 or 2 hours of daily observations for at least 3 consecutive days (min = 3, max = 10, average = 6.6 days). These observations started when the nestlings were around 6 days old since before the feeding activity is slower. Group size was established when no new birds were seen feeding after on average 5.5 consecutive sessions of observations. Observers were situated in a hide placed at 3–5 m from the colony. We identified 34 breeding groups from chambers where we collected the first egg (18 groups with helpers and 16 without). Rainfall closely influences food availability and the duration and success of the breeding season in sociable weavers [54], [66], [67]. We therefore monitored rainfall at the study site using a rain gauge. Detailed methods of yolk content’s analyses are available in protocol S1. Briefly, fresh yolk carotenoids concentrations were determined by colorimetry [68], [69]. Yolk concentrations of testosterone, A4 and corticosterone were determined by radio-immunoassay [70]. Correlations between first egg mass and the different contents analysed are given in Table 1. As often found in the literature [71], testosterone and A4 concentrations were positively correlated. More surprisingly yolk mass and A4 were negatively correlated (Table 1). The aim of our analyses was to study the effect of breeding group size or type (with/without helpers) on egg mass, yolk carotenoids and hormonal contents. In addition, we analysed the effect of breeding group on fledging mass taking into account the egg mass. For all these analyses we conducted linear mixed models using the package nlme in R (R Development Core Team, 2011). The final models were obtained by sequentially eliminating explanatory variables with P values >0.1 using a backwards stepwise approach. The minimal model provided the P values of significant terms whereas P values for non-significant terms were obtained by reintroducing each non-significant variable into the minimal model [72]. For each of the following analyses we built two types of models. One using breeding group size as a dependant variable (studying linear and quadratic relationships) and one using breeding group type (i.e. with/without helpers) as the effect of helper presence may be significant but not additive (i.e. regardless of helpers’ number). We present the results based on both group size and group type but as this represents multiple testing we adjusted the P values for false recovery rates [73]. Since, the relatively small sample sizes in this study do not provide strong statistical power, we also discuss the results when they were significant before false recovery rates corrections. To study the effect of helpers on egg mass we fitted the random factor ‘nest chamber’ in order to take into account the non-independence of eggs from a same clutch. The ‘nest chamber’ factor was nested in a ‘colony’ random factor as we had several nests from each colony. We fitted group size (from 2 to 6 individuals) or group type as a dependant variable and investigated both linear and quadratic relationships for group size. We also added the following co-variables that may affect egg mass in this species [74] and others [7], [8]: laying order (1 to 4); clutch size (2–4); colony size (10–128 individuals); the number of previous breeding attempts in the season (22 eggs were collected during the first breeding attempt and 12 during the second) and rainfall over the 18 days before laying (13.9–94.5 mm). The total rainfall over this period significantly correlated with the number of active clutches (i.e. clutches with eggs or chicks), the number of clutches laid per day and clutch size (Spearman rank correlations, respectively ρ = 0.876; ρ = 0.409; ρ = 0.476 all P<1.2 10−4). For the analyses of yolk mass and contents (i.e. carotenoids and hormones) we included the same terms as above, except ‘nest chamber’ and ‘laying order’ (since we collected only the first egg of each clutch). In addition, we included ‘egg mass of the first egg’ as a fixed term for the analyses of the yolk mass in order to know if the relative investment in yolk differed depending on the presence/number of helpers. As egg and yolk mass of the first eggs collected were not significantly correlated and as both are different indicators of female investment and offspring quality that may be influenced by the mother’s circulating hormones, even independently [75], we included both egg and yolk mass as fixed terms in the analyses of yolk contents. However, as the absolute allocation in yolk mass and contents may be more relevant for offspring fitness, we also present the results without taking into account egg and yolk mass when significant. In order to investigate the effect of breeding group size and type on fledging mass we used ‘nest chamber’ nested in ‘colony’ as random factors and egg mass, the number of hatchlings, hatching order, colony size, the number of breeding attempts and the rain during the 18 days before laying as fixed factors.