Background: Low socioeconomic status (SES) is associated with more adverse perinatal health outcomes, risk factors and lower access to and use of maternal health care services. However, evidence for the association between SES and maternal health outcomes is limited, particularly for middle-income countries like sub-Saharan Ghana. We assessed the association between parental SES and adverse maternal and perinatal outcomes of Ghanaian women during pregnancy, delivery and the postpartum period. Methods: A prospective cohort study of 1010 women of two public hospitals in Accra, Ghana (2012-2014). SES was proxied by maternal and paternal education, wealth and employment status. The association of SES with maternal and perinatal outcomes was analyzed with multivariable logistic and linear regression. Results: The analysis included 790 women with information on pregnancy outcomes. Average age was 28.2 years (standard deviation, SD 5.0). Over a third (n = 292, 37.0%) had low SES, 176 (22.3%) were classified to have high SES using the assets index. Nearly half (n = 374, 47.3%) of women had lower secondary school or vocational training as highest education level. Compared to women with middle assets SES, women with low assets SES were at higher risk for miscarriage (odds ratio, OR 1.61, 95% CI 1.06 to 2.45) and instrumental delivery (OR 1.74, 95% CI 1.03 to 2.94), but this association was not observed for the other SES proxies. For any of the maternal or perinatal outcomes and SES proxies, no other statistically significant differences were found. Conclusion: Women attending public maternal health care services in urban Ghana had overall equitable maternal and perinatal health outcomes, with the exception of a higher risk of miscarriage and instrumental delivery associated with low assets SES. This suggests known associations between SES, risk factors and outcomes could be mitigated with universal and accessible maternal health services.
This prospective cohort study was developed to assess factors related to maternal and perinatal outcomes of pregnant Ghanaian women, as described in detail elsewhere [15, 16]. Ghana has maternal mortality of 219 per 100.000 live births in 2015 and is classified as a middle-income country with an above median Human Development Index [17, 18]. The study was conducted at two outpatient departments (OPDs) of public hospitals in Accra, Ghana: the Maamobi General Hospital and Ridge Regional Hospital. The Accra Metropolis is one of the local government districts of the Greater Accra Region of Ghana. The Greater Accra Region is the most densely populated region in Ghana and 90% urban, compared to 50% national urban residence [19]. The population growth in Accra is the highest in the country – primarily through migration for relatively better employment opportunities and the region has the lowest number of children born per woman. The Greater Accra Region has the lowest poverty levels in the country. Pregnant women in Ghana receive universal health insurance through the national health insurance scheme (NHIS) [20]. Data from 1101 adult women were collected in the Accra Metropolis in Ghana from July 2012 to March 2014. Women were eligible for participation if they were over 18 years old, less than 17 weeks pregnant. Women with known pre-existent hypertension were excluded, because the initial aim of the cohort was to assess the incidence of gestational hypertension. Inequities in health outcomes were assessed based on participants socio economic status (SES). Four proxies were used to estimate SES: maternal and paternal education, wealth index and employment status. Level of maternal and paternal education was classified into: (1) no education or primary school, (2) lower secondary school or vocational training, and (3) senior secondary school, professional school or higher tertiary education. This classification was both conceptually and data driven (i.e. sufficiently large categories of women whose education level was considered comparable). An asset (or wealth) index (range of − 10 to 20) was obtained through a principle component analysis (PCA) of various household assets and household characteristics. As such, the index estimates the relative wealth of a household by looking at their living conditions and items the household owns, allowing for differentiation of SES status within this population as described by Vyas and Kumaranayake [21]. The variables included in the PCA were presence and quantity of: irons, refrigerators, televisions, VCDDVD set, radio, landline phone, mobile phone, computer, generator, fan, mattresses or beds, watch/clock, sewing machine, modern stove, bicycle, motorcycle, car or truck and bednets. Household characteristics were also included in the PCA: whether any of the household members owned the house, the number of rooms in the house, materials of floors and roof, kind of toilet facilities, fuel used for cooking and where the household accessed water. The index was both used as a continuous variable and categorized according to quintiles: (1) low (lowest two quintiles), (2) middle (third and fourth quintiles), and (3) high (highest quintile), as described elsewhere [15, 16]. Employment was classified into (1) informal sector employment and (2) formal sector employment. Other exposure variables: demographics and anthropometryOther covariates included woman’s age in years; body mass index (BMI) (m/kg2) based on measured weight and height; parity (0–1, 2–3, ≥4); gestational age based on ultrasound: first trimester (< 13 weeks), second trimester (≥13 weeks); area of birth (Ghana urban, Ghana rural, West African country); area of residence (Accra metropolitan area, other urban area, peri-urban and rural area); ethnicity (Akan, Hausa, Ewe, Ga Ga-Dangme, other); religion (Christian, Islam) and marital status (single or widowed, married, engaged or living together). Gestational hypertension (GH) was defined according to the ISSHP definition as “a systolic blood pressure ≥140 mmHg and/or a diastolic blood pressure ≥90 mmHg after 20 weeks gestation, measured twice, with women who previously had normal blood pressure” [22]. Blood pressure was measured according to Korotkov V according to hospital protocols [15, 16]. Pre-eclampsia (PE) was defined as “the combination of pregnancy induced hypertension with proteinuria (≥300 mg/ 24 hours), or minimal 1+ on a dipstick” [22]. Because of the low numbers of women GH and PE in the cohort, these two outcomes were combined and further referred to as hypertensive disorders (yes/no) of pregnancy. Postpartum hemorrhage (PPH) was defined as ‘blood loss more than 500 ml in the first 24 h after delivery [23]. The total blood loss was visually estimated by the midwives of the two hospitals. PPH was categorized into two groups based on the estimated amount of blood loss; < 500 ml and ≥ 500 ml. Maternal mortality was defined as “direct mortality due to complications of pregnancy, delivery, and puerperium”. Mode of delivery was defined as either spontaneous vaginal delivery or instrumental delivery including cesarean section (CS) and assisted delivery (vacuum or forceps). Because of the low numbers of cesarean and assisted delivery, these categories were combined to allow for higher numbers of women per category. WHO definitions were used for miscarriage, perinatal mortality, stillbirth, and preterm birth, as previously described [15, 16]. Apgar score was evaluated at 5 min after birth based on heart rate, respiratory effort, muscle tone, reflex irritability, and skin color. A score of ≥7 was considered normal. Birth weight was analyzed both as continuous and categorical variables (low birth weight ( 4000 g)). Women were recruited at the their first antenatal care (ANC) visit, where baseline independent variable data was collected by seven trained research assistants. The assistants used a structured questionnaire for socio-demographic characteristics (area of birth, area of residence, ethnical groups, religion and marital status), socio-economic characteristics (level of education, economic activity, assets, and household characteristics), and health status including obstetric history. Pregnancy outcomes, both maternal and neonatal, were obtained from the patient registers available at the two participating hospitals. The information contained in the antenatal record books (which women keep themselves throughout their pregnancy) was also used for prenatal information. Data collection occurred at enrolment, after delivery and at 6 weeks postpartum during the postnatal visit. Prior to the start of the study, questionnaires were validated. Data was entered by trained data clerks using EpiDataEntry software (EpiData Association, Odense, Denmark, 2010). The data was validated by double entry and checked for missing data. Participant characteristics were analyzed descriptively with frequencies (%) and means (standard deviation, SD) where appropriate, by categories of SES. Group (SES) differences were assessed by chi-square test (or Fisher’s exact) and one-way ANOVA for categorical and continuous variables respectively. Depending on the type of outcome variables (binary or continuous), logistic or linear regression analyses were used. Odds ratios (OR) and linear coefficients with corresponding 95% confidence intervals (CI) and two-sided p-values were respectively reported. In adjusted models, regression analysis were controlled for maternal age and body mass index (BMI). For SES estimates with multiple levels, the middle SES group was used as reference. For all analyses, participating women had to have at least one recorded maternal or perinatal outcome. If not, women were considered loss to follow up and not included in the analysis. Missing data was considered missing completely at random (MCAR) and complete-case analysis performed. All analyses were performed using IBM SPSS Statistics version 22 [24]. This study was approved by the Ghana Health Services Ethical Review Committee (GHS-ERC 07/9/11). All participants provided (written or thumb-printed) informed consent.