Background: While severe shortages, inadequate skills and a geographical imbalance of health personnel have been consistently documented over the years as long term critical challenges in the health sector of the United Republic of Tanzania, there is limited evidence on the gender-based distribution of the health workforce and its likely implications. Extant evidence shows that some people may not seek healthcare unless they have access to a provider of their gender. This paper, therefore, assesses the gender-based distribution of the United Republic of Tanzania’s health workforce cadres.Methods: This is a secondary analysis of data collected in a cross-sectional health facility survey on health system strengthening in the United Republic of Tanzania in 2008. During the survey, 88 health facilities, selected randomly from 8 regions, yielded 815 health workers (HWs) eligible for the current analysis. While Chi-square was used for testing associations in the bivariate analysis, multivariate analysis was conducted using logistic regression to assess the relationship between gender and each of the cadres involved in the analysis.Results: The mean age of the HWs was 39.7, ranging from 15 to 63 years. Overall, 75% of the HWs were women. The proportion of women among maternal and child health aides or medical attendants (MCHA/MA), nurses and midwives was 86%, 86% and 91%, respectively, while their proportion among clinical officers (COs) and medical doctors (MDs) was 28% and 21%, respectively. Multivariate analysis revealed that the odds ratio (OR) and 95% confidence interval (CI) that a HW was a female (baseline category is ” male” ) for each cadre was: MCHA/MA, OR = 3.70, 95% CI 2.16-6.33; nurse, OR = 5.61, 95% CI 3.22-9.78; midwife, OR = 2.74, 95% CI 1.44-5.20; CO, OR = 0.08, 95% CI 0.04-0.17 and MD, OR = 0.04, 95% CI 0.02-0.09.Conclusion: The distribution of the United Republic of Tanzania’s health cadres is dramatically gender-skewed, a reflection of gender inequality in health career choices. MCHA/MA, nursing and midwifery cadres are large and female-dominant, whereas COs and MDs are fewer in absolute numbers and male-dominant. While a need for more staff is necessary for an effective delivery of quality health services, adequate representation of women in highly trained cadres is imperative to enhance responses to some gender-specific roles and needs. © 2013 Exavery et al.; licensee BioMed Central Ltd.
This is a secondary analysis of data collected in 2008 in a cross-sectional health facility survey in the United Republic of Tanzania. The survey was conducted by the Ifakara Health Institute (IHI), United Republic of Tanzania, in collaboration with Columbia University, USA, as part of the implementation of the Health Systems Strengthening for Equity (HSSE) project. Based on the eight United Republic of Tanzanian zones, one region from each zone was selected randomly through a multi-stage sampling technique which brought up eight regions: Dodoma, Pwani, Mwanza, Tanga, Mbeya, Iringa, Tabora and Mtwara. From each district in these regions, two health facilities (one hospital and/or one health centre) providing emergency obstetric care (EmOC) were selected. This made a total of 88 health facilities from which 825 health workers (HWs) participated in the survey. Of these HWs, 815 (98.8%) with non-missing data on gender and cadre were extracted from the parent database for the current analysis. Selected HWs for the primary study responded to a self-administered provider questionnaire which comprised mostly closed-ended questions and a few open-ended ones. Broadly, the questions pertained to the HWs’ background and employment, pre- or in-service training programs attended, feelings of job satisfaction, and a discrete choice experiment which aimed at understanding factors that affect employment preferences. Following interviewer training, the tool was pre-tested in facilities similar to those actually surveyed to check for relevance and answerability of the survey questions. Original cadres were operationally regrouped by merging those that were closely related because the numbers of respondents for some cadres, such as specialists, were very small. Maternal and child health aide (MCHA), medical attendant (MA) and nursing assistant were joined to form a single category, “MCHA/MA”; registered public health nurse (PHN), enrolled public health nurse (EPHN), registered nurse (RN) and enrolled nurse (EN) were combined into a single category and referred to as “nurse”; registered midwife and enrolled midwife were grouped together as “midwife”; clinical officer (CO) remained unchanged; and assistant medical officer (AMO), medical officer (MO) and specialist were combined and referred to as “medical doctor (MD)”. Gender-specific proportions of the HW in various categories of socio-demographic characteristics were calculated. The degree of association between gender and sociodemographic characteristics was tested using Pearson’s Chi-square (χ2) and Student’s t-tests for categorical and continuous variables, respectively. Further analyses were performed using multivariate logistic regression to assess the relationship between gender and each of the cadres, controlling for potential confounders. Each of these cadres was assessed as a separate dependent variable with two (binary) categories that classified a HW as either an MD or not an MD, CO or not a CO and so on. As coding of the outcome variable in logistic regression requires, a code of ‘1’ was assigned if a HW belonged to a particular cadre and ‘0’ if not. Therefore, the probability that a HW was an MD for example was expressed in a multivariate logistic regression model as: where p^ is the expected probability that a HW is an MD; X1 through Xk are k distinct independent variables; and b0 through bk are the regression coefficients. The model was then re-written with the outcome expressed as the expected natural logarithm of the odds that a HW is an MD as: The main independent variable was gender (female = 1, male = 0). This variable was taken along with other several independent variables including age, educational attainment, region, health facility ownership, and health facility type. Educational attainment was included because of evidence from other countries showing that some women do not prefer courses that take a long time to graduate, resulting in fewer women in specialized professional jobs [26]. Facility type was included in the analysis as an indicator of facility location. In the United Republic of Tanzanian health system context, a hospital is the highest level of care that serves either a region (regional hospital) or a district (district hospital) and is usually located in the headquarters of regions or districts. Therefore, it may be appropriate to consider hospital locations in the United Republic of Tanzania as urban. Health centres on the other hand, which are the second highest level of care in the United Republic of Tanzania, exist mostly in rural and sometimes in urban settings. Therefore, this variable to a larger extent reflects the rural–urban distribution of HWs in the country. Data analysis was performed using STATA (Version 11) statistical software (Stata Corp, Texas, USA). Ethical approval to conduct the main survey from which this paper stems was granted by the Medical Research Coordinating Committee (MRCC) of the National Institute for Medical Research (NIMR) in the United Republic of Tanzania. Participation in the study was voluntary with all consenting individuals having to sign an informed consent form first. To ensure integrity and confidentiality, the database was anonymous with no information (e.g. names) that could identify the participant. Storage of completed questionnaires and consent forms was carefully managed, and access to the data was restricted to a few experts.
N/A