Background: Globally, more than two billion people are at risk of iodine deficiency disorders, 32% of which are school children. Iodine deficiency has been recognized as a severe public health concern in Ethiopia, however little is known about the problem. Therefore, this study aimed to assess the prevalence of goiter and associated factors among school children (6 to 12 years) in Dabat District, northwest Ethiopia. Methods: A school-based cross-sectional study was conducted from February 21 to March 31, 2016. A total of 735 school children were included in the study. A stratified multistage sampling followed by systematic sampling technique was employed to select the study participants. Thyroid physical examination was done and classified according to the World Health Organization recommendations as grade 0, grade 1, and grade 2. The level of salt iodine content was determined using the rapid field test kit. The value 0 parts per million (PPM), <15 PPM and ≥15 PPM with the corresponding color chart on the rapid test kit were used to classify the level of iodine in the sampled salt. A multivariable logistic regression analysis was employed to identify factors associated with goiter. Adjusted Odds Ratio (AOR) with a 95% Confidence Interval (CI) was calculated to show the strength of association. In multivariable analysis, variables with a P-value of <0.05 were considered statistically significant. Results: In this community, the overall prevalence of goiter was 29.1% [95% CI: 25.9, 32.6], in which about 22.4 and 6.7% had goiter grade 1 and grade 2, respectively. The age of children (AOR = 1.13; 95% CI: 1.01, 1.26), being housewife mother (AOR = 1.49; 95% CI: 1.08, 2.15), use of unprotected well water source for drinking (AOR = 6.25; 95% CI: 2.50, 15.66), medium household wealth status (AOR = 1.78; 95% CI: 1.18, 2.92), use of inadequately iodized salt (AOR = 2.79; 95% CI: 1.86, 4.19), poor dietary diversity score of the child (AOR = 1.92;95% CI: 1.06, 3.48) and medium maternal knowledge (AOR = 0.65; 95% CI: 0.42, 0.94) were significantly associated with goiter. Conclusions: The prevalence of goiter is higher in Dabat District, which confirmed a moderate public health problem. Therefore, regular monitoring of household salt iodine content, improving access to safe water, promoting the importance of diversified food for children is recommended to address the higher burden of iodine deficiency.
A school-based cross-sectional study was conducted from February 21 to March 31, 2016, in Dabat District, northwest Ethiopia. The district is found 821 km from Addis Ababa, the capital city of Ethiopia. The district has 26 rural and four urban Kebeles (smallest administrative unit in Ethiopia). The altitude of the district ranges from 1000 to 2500 m above the sea level. The total population of 175,737 lives in the district. Cereals, such as maize, sorghum, wheat, and barley are the main staple crops cultivated in the district. The district has six health centers and 31 health posts. There are 82 schools in the district, 79 of which are primary schools. The Health and Demographic Surveillance System (HDSS) site was also located in Dabat District. The HDSS site has been running since 1996 and hosted by the University of Gondar. The surveillance site covers thirteen kebeles (four urban and nine rural kebeles) selected by considering different ecological zones (high land, middle land and lowland). All children aged 6–12 years who lived in HDSS site and attended primary school during the study period were eligible for the study. The sample size was calculated using Epi-info version 2.3 by using the following assumptions; the prevalence of goiter among school-aged children was 37.6% [28], 95% level of confidence and 5% margin of error. Finally, the sample size of 757 was obtained by considering 5% non-response rate and a design effect of 2. A multistage stratified sampling followed by systematic random sampling technique was employed to reach the study participants. Initially, schools were stratified into urban and rural. Of the total twenty-four primary schools in the HDSS site, five (one urban and four rural) schools with a total of 3429 students were selected using the lottery method. Number of students included in each school were proportionate-to-population size. Finally, a systematic sampling technique was employed to select the study subjects. Physical examination was done for the selected child, after that using the child’s name, parent’s name and address, household visit was made by data collectors to gather the socio-demographic, the household utilization of iodized salt and dietary habit related characteristics of the child and the parents. Women who were majorly involved in food preparation of the household were selected as a respondent. A structured interviewer-administered questionnaire was used to collect data. The questionnaire was first prepared in English and was translated into the local language (Amharic) and back translated to English to maintain consistency by two BSc holder English teachers who are also native speakers of Amharic language. Pretest was done on five percent of the sample out of the study area. Two days training on techniques of interview, salt iodine content determination and thyroid physical examinationwas given for data collectors and supervisors. A total of nine data collectors (two health officers, an environmental health professional, and six permanent data collectors of the HDSS site) and three supervisors (two public health experts and a medical doctor) were involved in the study. Accordingly, the thyroid physical examination was undertaken by two Health Officers under the supervision of a medical doctor. Determination of salt iodine content was done by the trained environmental health professional. Daily supervision and feedback were carried out by the investigators and supervisors during the entire data collection period. The presence of goiter was assessed by the trained Health Officers with strict adherence to the standard procedures stipulated by the World Health Organization. Accordingly, goiter was defined as grade 0 if no palpable mass in the neck was detected, grade 1 if there was a mass in the neck consistent with palpable enlarged thyroid, but not visible when the neck was in the normal position, whereas grade 2 was a swelling in the neck that was visible when the neck is in a normal position and is consistent with an enlarged thyroid when the neck is palpated (palpable and visible). Lastly, the child was deemed as having goiter when he/she had goiter of grade 1 or 2 [29]. A tablespoon of salt was collected from each household and the MBI international Rapid Test Kit (RTK) was used to determine the level of salt iodine content [16, 27, 29]. The small cup in the kit was filled with salt and made the cup surface flat. Two drops of test solution from white ampule were added to the surface of the salt by piercing the white ampoule with a pin and gently squeezing the ampule. The salt iodine content was determined within one minute by comparing the color developed on the salt with the color chart. The value 0 Parts per Million (PPM), <15 PPM and ≥15 PPM with the corresponding color chart on the rapid test kit were used to classify the level of iodine in the sampled salt. If no color appears, after 1 min, five drops of the recheck solution from red ampule was added to a fresh salt sample and followed by two drops of test solution on the same salt sample. Then, a comparison was done with the color chart indicators for salt iodine content [29]. Determination of dietary diversity score (DDS) of the child was started by asking the mother to list all food consumed by the child in the previous 24 h preceding the survey. Then reported food items were classified into nine food groups, as starchy staples; dark green leafy vegetables; vitamin A rich fruits and vegetables; other fruits and vegetables; organ meat; flesh meat and fish; and egg [30]. Considering four food groups as the minimum acceptable dietary diversity, a child with a DDS of less than four was classified as having poor dietary diversity; otherwise, it was deemed to have good dietary diversity [30]. Household’s wealth index, adopted from EDHS 2011 [31], was determined using Principal Component Analysis (PCA) by considering the household assets, such as quantity of cereal products, type of house, livestock and agricultural land ownership. First, variables were coded between 0 and 1. Then variables entered and analyzed using PCA, and those variables having a communality value of greater than 0.5 were used to produce factor scores. Finally, the factor scores were summed and ranked into tertiles as poor, medium and rich. Similarly, the knowledge of mothers towards iodized salt use was computed by using nine knowledge item questions, adopted by reviewing different literatures [7, 16, 28], including the health benefit of iodized salt, disorders resulted from ID, food sources of iodine, appropriate place for salt storage, time to add salt during food preparation, salt storage material and existence of law prohibiting selling of non-iodized salt in Ethiopia. Accordingly, the factor scores were summed and ranked into poor, medium and high. The collected data were checked and entered into Epi-info version 7 and exported to SPSS version 20 statistical software for analysis. Descriptive statics were carried out and the result was presented using text, tables and graph. A binary logistic regression model was fitted to identify factors associated with goiter. Variables with a p-value less than <0.2 in the bivariable analysis and those which frequently showed significant association with goiter in the previous studies were fitted into the multivariable logistic regression analysis and backward LR method was employed. Both Crude Odds Ratio (COR) and Adjusted Odds Ratio (AOR) with the corresponding 95% Confidence Interval (CI) were calculated to show the strength of association. In multivariable analysis, variables with a p-value of <0.05 were considered as statistically significant.
N/A