Background Maternal nutrition depletion during pregnancy compromises fetal programming, and is a cause of adverse birth outcomes. Maternal body composition measurement using direct body composition assessment methods such as the deuterium dilution technique provides better prediction of birth outcomes as compared with commonly used techniques like anthropometry. This study assessed body composition of pregnant mothers in urban informal settlements in Nairobi, Kenya, and established the relationship between maternal body composition and infant birth weight. Methods Deuterium dilution technique was used to determine body composition, including total body water (TBW), fat-free mass (FFM) and fat mass (FM), among 129 pregnant women who were enrolled into the study in their first or second trimester. Descriptive statistics and regression analysis were applied using Stata V.13. Results The mean TBW, FFM and FM were 33.3 L (±4.7), 45.7 kg (±6.5) and 17.01 kg (±7.4), respectively. Both TBW and FFM were significantly related to maternal age and gestation/pregnancy stage during body composition assessment while FM was significantly associated with gestation stage during body composition assessment. TBW and FFM were significantly lower in younger mothers (<20 years) compared with older mothers (≥20 years). The mean birth weight was 3.3 kg±0.42 kg. There was a positive association between infant birth weight and maternal TBW (p=0.031) and FFM (p=0.027), but not FM (p=0.88). Conclusion Non-fat components of the body (TBW and FFM) have a positive association with birth weight. Therefore, interventions to improve optimal maternal feeding practices, to enhance optimal gains in FFM and TBW during pregnancy are recommended, especially among young mothers.
The study was conducted in the Korogocho and Viwandani slums in Nairobi, settings characterised by poor access to basic amenities including portable water, waste disposal, health and education services.21–23 These settings also have poor housing, high levels of food insecurity and are exposed to high levels of unemployment, violence and teenage pregnancy.24 25 In addition, Kenyan urban informal settlements have higher infant mortality rates (75 in 1000 live births) compared with other subpopulations,26 and birth weight is a major cause of poor child health and deaths in the two settlements.20 21 A calculated sample of 129 women in their first and second trimesters were recruited to participate in this study, which was nested within a broader maternal infant and young child nutrition (MIYCN) study. The MIYCN study involved the follow-up of a cohort of over 1000 women from pregnancy until 1 year after delivery to determine the feeding practices and nutrition status of mothers and children in this cohort in the two slums.27 The MIYCN study was implemented from 2012 to 2014 within the Nairobi Urban Health and Demographic Surveillance System (NUHDSS), which is run by the African Population and Health Research Center. NUHDSS has been in operation since 2002 and involves surveillance of the population living in Korogocho and Viwandani, to monitor their health and demographic outcomes.22 Systematic sampling was used to select the 129 pregnant women from the larger cohort of 1000 women recruited into the MIYCN study, whereby every eighth eligible mothers listed in the MIYCN study were recruited to participate in this study. The pregnant women who were sampled to participate in the study were contacted by the researcher, informed about the study and invited to a central place within the study community, where the deuterium dosing, saliva sample collection, anthropometric measurements (weight and height) and a face-to-face interview on socioeconomic, demographic, health and health-seeking behaviour and pregnancy characteristics were conducted. Their gestation stage at the time of body composition was established through the date of their last menstrual period as recorded in the mother and child booklet (issued during antenatal care (ANC) visits), and recall for those who did not have the mother and child booklet. The deuterium dilution procedures were carried out by a professional specialist trained on this technique by the International Atomic Energy Agency (IAEA), while the interviews were conducted by trained research assistants. Deuterium dosage and analysis for body composition of the pregnant mothers was done as described by the IAEA.14 The mothers were then followed up after delivery to collect their infant’s birth weight and sex, as recorded in the mother and child health booklet at delivery in the hospital. Stata V.13 (StataCorp, College Station, TX) was used for statistical analysis. Descriptive summary statistics were calculated for socioeconomic and demographic characteristics, and body composition measurements. The relationship between maternal characteristics (sociodemographic, economic, health), maternal body composition (TBW, FFM, FM) and infant’s birth weight was determined using linear regression analysis while controlling for potential confounders.
N/A