Background: The knowledge on emergency obstetric care (EmOC) is limited in Kenya, where only partial data from sub-national studies exist. The EmOC process indicators have also not been integrated into routine health management information system to monitor progress in safe motherhood interventions both at national and lower levels of the health system. In a country with a high maternal mortality burden, the implication is that decision makers are unaware of the extent of need for life-saving care and, therefore, where to intervene. The objective of the study was to assess the actual existence and functionality of EmOC services at district level. Methods. This was a facility-based cross-sectional study. Data were collected from 40 health facilities offering delivery services in Malindi District, Kenya. Data presented are part of the “Response to accountable priority setting for trust in health systems” (REACT) study, in which EmOC was one of the service areas selected to assess fairness and legitimacy of priority setting in health care. The main outcome measures in this study were the number of facilities providing EmOC, their geographical distribution, and caesarean section rates in relation to World Health Organization (WHO) recommendations. Results: Among the 40 facilities assessed, 29 were government owned, seven were private and four were voluntary organisations. The ratio of EmOC facilities to population size was met (6.2/500,000), compared to the recommended 5/500,000. However, using the strict WHO definition, none of the facilities met the EmOC requirements, since assisted delivery, by vacuum or forceps was not provided in any facility. Rural-urban inequities in geographical distribution of facilities were observed. The facilities were not providing sufficient life-saving care as measured by caesarean section rates, which were below recommended levels (3.7% in 2008 and 4.5% in 2009). The rates were lower in the rural than in urban areas (2.1% vs. 6.8%; p < 0.001) in 2008 and (2.7% vs. 7.7%; p < 0.001) in 2009. Conclusions: The gaps in existence and functionality of EmOC services revealed in this study may point to the health system conditions contributing to lack of improvements in maternal survival in Kenya. As such, the findings bear considerable implications for policy and local priority setting. © 2013 Echoka et al.; licensee BioMed Central Ltd.
This was a facility-based cross-sectional survey, conducted between October and December 2010 in Malindi District, Kenya. The district is located in the southern coastal region, covering an area of 7, 792 square kilometers. Four divisions: Malindi, Langobaya, Marafa and Magarini constitute the district. The total population in the district was 400,514 people in 2009, with urban–rural distribution of 140,739 and 259,775 persons, respectively [19]. Malindi division has a higher population density than the other three divisions as it has favourable topographic features and economic factors affecting human settlement. Malindi town, which is located in Malindi Division, has been labeled “Little Italy”, with an estimated 3,000 Italian residents. The district has a total of 105 public and private health facilities [17]. Of these, 42 (40%) offer delivery services. The total fertility rate in the district was 4.8 children per woman of reproductive age and crude birth rate of 38.1/1000 [20]. All the 42 facilities (private and public) that offer delivery services in Malindi District were listed for inclusion in the study. Since it was feasible to study all the facilities listed, no sampling was done. Two facilities were, however, not reached due to bad road conditions. Although there are a total of eight process indicators, the study focused on the first, second and fifth indicators, since the aim of the study was to describe the actual situation in terms of existence and functionality of EmOC and provision critical life saving services. The first indicator examined the availability of EmOC. This was measured by obtaining data on the number of facilities that perform the complete set of signal functions. A standard tool was used to interview the in-charge of maternity unit, whether the nine signal functions had been performed at least once during the previous three months (Yes/No) [10]. If any of the signal functions had not been performed, reasons were recorded. A review of facility registers to ascertain that the signal functions were performed was done. In addition, observations to indicate the availability of equipment and drugs were conducted. A strict WHO definition of a basic EmOC facility is one that has performed all the first seven signal functions in the last three months. A comprehensive EmOC facility is one that has performed caesarean section and blood transfusion in addition to basic functions in the past three months. In some instances, a signal function such as assisted delivery, is not performed in some countries as a matter of policy. According to the WHO handbook of assessing EmOC, “If a signal function is systematically absent in a region, it is possible to use the designation comprehensive “minus one” or basic “minus one” as a temporary measure while policies are reviewed and programmatic interventions planned to remedy the lack” [10]. The second indicator examined equity in distribution of facilities. This was achieved through mapping of facilities to identify gaps in geographical distribution of services and acknowledge added barriers such as distance to facilities. Geographical coordinates of different facilities were collected using a handheld Geographical Positioning System (GPS) device (Garmin eTrex). The device automatically logged in longitude and latitude values. Facility name, administrative location and type of facility were keyed in the device. The GPS data were downloaded into a spreadsheet and mapped onto an administrative map within ArcGIS 9.3 software environment. The map contained data from the survey department, with the most up to date official administrative boundaries. Road infrastructure and key features like settlements and water bodies were overlaid with the administration boundaries data to produce base maps. The GPS data were analysed in relation to administrative locality of facilities. This facilitated identification of underserved areas and approximate distance as an independent indicator of limitation to access. The conditions of roads and various terrain barriers were not considered since the buffer tool assumes a straight line distance function that would mean in real-time land travel. The buffer proximity analysis provided the shortest distance it would take to reach the comprehensive care facility. The fifth indicator assessed the provision of critical life saving services for pregnant women as measured by caesarean section rates in the district. To obtain this data, a form was completed for every woman who underwent a caesarean section to obtain information on the indications for the intervention, geographical origin of the women and outcome for mother and newborn. The data were collected retrospectively for the periods 1st January 2008 to 31st December 2009. The data, together with district population figures [19] were used to calculate caesarean section rates by division and rural–urban residence of the women. The differences in rates between urban and rural women were compared using Pearson’s Chi-square test of association. The strength of the association was estimated using odds ratios, with corresponding 95% confidence interval. Approval to conduct this study was obtained from the Kenya Medical Research Institute’s Ethical Review Committee (Scientific Steering Committee Number 1808). Written permission was obtained from the Medical Officer of Health in the district prior to visiting the health facilities. All data have been maintained as confidential and no individuals will be identified in dissemination of findings.
N/A