Introduction Stunting or linear growth faltering, measured by length-for-age Z-score (LAZ), remains a significant public health challenge, particularly in rural low-income and middle-income countries. It is a marker of inadequate environments in which infants are born and raised. However, the contributions of household resource insecurities, such as food and water, to growth and growth trajectory are understudied. Methods We used the cluster-randomised Sanitation Hygiene and Infant Nutrition Efficacy trial to determine the association of household-level food insecurity (FI) and water insecurity (WI) on LAZ and LAZ trajectory among infants during early life. Dimensions of FI (poor access, household shocks, low availability and quality) and WI (poor access, poor quality, low reliability) were assessed with the multidimensional household food insecurity and the multidimensional household water insecurity measures. Infant length was converted to LAZ based on the 2006 WHO Child Growth Standards. We report the FI and WI fixed effects from multivariable growth curve models with repeated measures of LAZ at 1, 3, 6, 12 and 18 months (M1-M18). Results A total of 714 and 710 infants were included in our analyses of LAZ from M1 to M18 and M6 to M18, respectively. Mean LAZ values at each time indicated worsening linear growth. From M1 to M18, low food availability and quality was associated with lower LAZ (β=-0.09; 95% -0.19 to -0.13). From M6 to M18, poor food access was associated with lower LAZ (β=-0.11; 95% -0.20 to -0.03). None of the WI dimensions were associated with LAZ, nor with LAZ trajectory over time. Conclusion FI, but not WI, was associated with poor linear growth among rural Zimbabwean infants. Specifically, low food availability and quality and poor food access was associated with lower LAZ. There is no evidence of an effect of FI or WI on LAZ trajectory.
The SHINE trial design and primary outcomes have been published previously.59 62 Additional information on the protocol and statistical analysis plan are available elsewhere (https://osf.io/w93hy). In summary, SHINE randomly assigned clusters, in two rural Zimbabwean districts (Shurugwi and Chirumanzu), to receive one of four interventions: (1) standard of care (SOC), (2) infant and young child feeding (IYCF), (3) water, sanitation, hygiene (WASH) and (4) IYCF+WASH. The clusters were defined as the catchment area of 1–4 village health workers employed by the Ministry of Health and Child Care. Between 22 November 2012 and 27 March 2015, pregnant women aged 15–49 years old who were permanent residents of those rural areas were enrolled. The infants born to the pregnant women were followed over time to ascertain stunting and anaemia at M18. The analyses presented in this paper focus on the SOC arm (n=1166 live born infants), which received only the WHO recommended education modules on optimal breastfeeding practices for all infants from birth to M6. Thus, the SOC arm was considered appropriate for investigating the effects of FI and WI on infant growth and growth trajectory, independent of the SHINE interventions. Research nurses made home visits at multiple times to collect relevant information from households, mothers and infants: at baseline (during pregnancy) and at infant ages 1, 3, 6, 12 and 18 months (M1–M18). Growth: We used LAZ as the indicator for growth. Recumbent length was measured to the nearest 0.1 cm using a Seca 417 infantometer by trained nurses. The length measurements at each time were converted to LAZ based on the 2006 WHO Child Growth Standards.63 FI and WI: The multidimensional household food insecurity (MHFI) and the multidimensional household waterinsecurity (MHWI) measures, developed specifically for the rural Zimbabwean households, were used.64 These measures were created from separate factor analyses using groups of food-related and water-related variables collected at baseline (during pregnancy) from the SHINE trial. From these analyses, FI and WI were characterised by three dimensions each. MHFI includes (1) poor food access, (2) household shocks and (3) low food availability and quality; whereas MHWI includes (1) poor water access, (2) poor water quality and (3) low water reliability. A description of the variables making up each dimension is provided in table 1. Each MHFI and MHWI dimension was scored in postestimation commands in the ‘PCAmix’ package from the R software (R Foundation for Statistical Computing, Vienna, Austria) V.4.0.2. We used each of these three dimensions of FI and WI as the main continuous exposure variables in this study. These variables were included simultaneously in the statistical models. An important note is that higher scores on the dimensions of FI and WI as described in table 1 represent higher levels of insecurity. Description of MHFI and water insecurity MHFI, multidimensional household food insecurity; MHWI, multidimensional household water insecurity. Covariates: At baseline (during pregnancy), a structured questionnaire was used to collect information on maternal and household characteristics such as maternal age (years), maternal height (cm), maternal education (some primary, some secondary, completed secondary), formal employment outside the home (yes/ no), marital status (married vs other), religion (apostolic, other Christian, other), parity (parous, nulliparous, missing), household size (number of household members), presence of improved latrine (yes/no), household location (Shurugwi/Chirumanzu) and season at baseline (during pregnancy) interview (calendar quarter). The HIV status of women was determined using a rapid test algorithm; those who tested positive were directed to local clinics for follow-up and treatment. Socioeconomic status (SES) was based on a household wealth index created specifically for this population.65 Maternal depression, based on Edinburgh’s Postnatal Depression Scale,66 and mothering self-efficacy67 were collected using validated scales for the Zimbabwean population as described previously. Pregnant women’s diet adequacy was assessed based on food group consumption, as described in the FANTA project Minimum Dietary Diversity for Women (yes/ no).68 Infant characteristics such as date of birth, sex, birth weight and prematurity (born at<37 weeks of gestation) were abstracted from health facility records. Infant breast feeding in the 24 hours prior to interviews at M6, M12 and M18 was self-reported by the mother. Since SHINE was household based, the intermediate visits were conducted only when mother–infant dyads still lived at the address where they consented. If after two contact attempts the participants remained inaccessible, they were considered missing at those time points. At M18, participants were visited anywhere in Zimbabwe even if they had moved on from their initial residence. In addition to our sample being restricted to infants from the SOC arm, analyses were further limited to infants who had complete information on FI, WI, at least one LAZ measure out of five and the above prespecified covariates. Infants, who had died prior to the end of the trial (n=67), whose mothers signed voluntary consent to exit the study (n=5) and who had implausible LAZ patterns over time, were also excluded (n=3). Descriptive statistics were used to summarise the characteristics of the infants included in the analysis. Frequencies and percentages were used for categorical variables. Medians (p50) and IQRs were used for the distributions of the FI and WI dimensions. After graphically confirming normal LAZ distribution of our sample, LAZ values were summarised using means and SDs. The associations of FI and WI with LAZ and LAZ trajectory were investigated through multivariable growth curve modelling of their fixed effects. We used unstructured covariance structure to account for multiple measurements of length on the same infant over time. Time interactions with FI and WI represented growth trajectory associated with these exposures in our models. Two groups of variables were defined a priori. Group 1 included only variables that were considered theoretically critical given the main predictors and population: season at baseline (during pregnancy) interview, household SES, infant sex, residence location, improved latrine and maternal HIV status. Group 2 additionally included risk factors for poor growth: maternal age, height, education, religion, parity, maternal depression, mothering self-efficacy, infant birth weight, prematurity, breast feeding and household size. Group 2 variables and time-covariate interactions were selected using backward stepwise regressions with retention at p<0.2 at each modelling stage. Multicollinearity was tested with variance inflation factors (VIF <5). The best subset of covariates for the growth models was identified by comparing AIC and BIC between models. Two models are presented in the results section. Model 1 consists of group 1 variables and time interaction with infant sex (minimally adjusted model (Min-AM)). Model 2 includes Min-AM, plus maternal age, height, education, religion, infant birth weight, preterm birth, household size, continued breast feeding until M18 and time interactions with maternal height, infant birth weight and continued breast feeding until M18 (fully AM (Full-AM)). All analyses were performed in Stata/MP V.17 (StataCorp). Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of the research presented in this paper.
N/A