Background: Many low- and middle-income countries are facing a double burden of disease with persisting high levels of infectious disease, and an increasing prevalence of non-communicable disease (NCD). Within these settings, complex processes and transitions concerning health and population are underway, altering population dynamics and patterns of disease. Understanding the mechanisms through which changing socioeconomic and environmental contexts may influence health is central to developing appropriate public health policy. Migration, which involves a change in environment and health exposure, is one such mechanism. Methods: This study uses Competing Risk Models to examine the relationship between internal migration and premature mortality from AIDS/TB and NCDs. The analysis employs 9 to 14 years of longitudinal data from four Health and Demographic Surveillance Systems (HDSS) of the INDEPTH Network located in Kenya and South Africa (populations ranging from 71 to 223 thousand). The study tests whether the mortality of migrants converges to that of non-migrants over the period of observation, controlling for age, sex and education level. Results: In all four HDSS, AIDS/TB has a strong influence on overall deaths. However, in all sites the probability of premature death (45q15) due to AIDS/TB is declining in recent periods, having exceeded 0.39 in the South African sites and 0.18 in the Kenyan sites in earlier years. In general, the migration effect presents similar patterns in relation to both AIDS/TB and NCD mortality, and shows a migrant mortality disadvantage with no convergence between migrants and non-migrants over the period of observation. Return migrants to the Agincourt HDSS (South Africa) are on average four times more likely to die of AIDS/TB or NCDs than are non-migrants. In the Africa Health Research Institute (South Africa) female return migrants have approximately twice the risk of dying from AIDS/TB from the year 2004 onwards, while there is a divergence to higher AIDS/TB mortality risk amongst female migrants to the Nairobi HDSS from 2010. Conclusion: Results suggest that structural socioeconomic issues, rather than epidemic dynamics are likely to be associated with differences in mortality risk by migrant status. Interventions aimed at improving recent migrant’s access to treatment may mitigate risk.
The paper employs data from four HDSSs located in Kenya and South Africa. These HDSS centres are members of the International Network for the Demographic Evaluation of Populations and Their Health (INDEPTH), and are part of the INDEPTH MADIMAH project which uses standardised data formats and protocols to analyse prospective longitudinal data on migration and health see [29–31]. The HDSS method continuously registers all births, deaths and in- and out-migrations within a geographically defined population. The two South African HDSS sites included in the analysis, Agincourt and the Africa Health Research Institute (AHRI), are located in mostly-rural settlement types in two different provinces of the country. The two Kenyan HDSSs are located in Nairobi and Kisumu. The Nairobi surveillance area consists of two non-contiguous, densely populated urban neighbourhoods, while the Kisumu HDSS is a contiguous, mostly-rural settlement type (see Table 1 for characteristics of the HDSS sites in the sample). The four HDSSs were selected from two countries with high levels of premature adult mortality and a high burden of HIV. In South Africa and Kenya, life expectancy at birth was most recently estimated at 59 years and 61 years respectively, while HIV/AIDS was the leading cause of death in both countries with 54.5 deaths per 1000 attributed to this cause in Kenya and 202.1 per 1000 in South Africa [32]. In 2012, the probability of death between the ages 30 and 70 due to four major NCDs (cancer, cardiovascular disease, chronic respiratory disease and diabetes) was estimated at 27% in South Africa, and 18% in Kenya respectively [32]. The HDSSs included in the study met the following criteria for inclusion in the analysis: cause of death data had been collected, there were a sufficient number of deaths by analysis category, and these sites had undertaken a minimum of nine years of follow-up. Nine years of follow-up was used as an inclusion criterion since it provides a minimum duration of time to analyse migrants who had left and then returned to the HDSS area. In a prior analysis, no significant difference in mortality risk amongst migrants and permanent residents was found ten years following migration due to the effect of adaptation, thus migrants who have been in the HDSS areas for ten years or longer are regarded as permanent residents [21]. HDSS sites included in this multi-centre analysis Data on causes of death were collected using verbal autopsies that were conducted according to WHO standards [33, 34]. Cause of death assignments based on verbal autopsy data were computed using InterVA4 ver4.02 [35], with cause of death categories corresponding to International Classification of Diseases (ICD 10) [36, 37]. These methods produce standardised data on cause of death across the study locations. In the analysis, causes of death were grouped into a set of broad categories: major risk infectious disease (HIV/AIDS related death or pulmonary tuberculosis); other infections (e.g.: acute respiratory infections, malaria); NCDs (e.g.: diabetes mellitus, acute cardiac disease, stroke) and neoplasms; maternal and neonatal causes; external causes (e.g.: road traffic accidents, assault, self-harm), and unknown or indeterminate causes. The focus of the study is on AIDS/TB and NCD mortality because of the interest in disease dynamics of these two dominant epidemics. Nevertheless, probability of death by cause is presented for all cause categories. The migration-death competing risk conceptual model employed in the analysis is presented in Fig. 1. Migration in this analysis is defined as a move that crosses the geographical boundary of the HDSS site in an inward or outward direction. Moves that take place within an HDSS area are therefore excluded from the analysis. HDSS sites may apply different time thresholds to define an in- or out-migration, ranging from three to six months residency following a move. In order to standardise the migration definition across the HDSS sites in the study, a six-month residency threshold was applied to determine an individual’s residency status in the surveillance area (see [21, 31] for more details on migration methods). Migration-Death Competing Risk Model Migration status is defined as either first time in-migrant to the HDSS area, return migrant to the HDSS or permanent resident (individuals who have not migrated). In-migrants are individuals who have not previously resided in the HDSS surveillance area, while return migrants are former residents who have temporarily relocated (generally to take up employment). In the case of in- and return migrants, the analysis further discriminates risk of mortality by the duration of time since entry into the HDSS area. The effect of duration was observed to be significant in previous work [21]. The models used in this study control for three categories of duration following an in- or return migration to the HDSS area: six months to two years; two to five years and five to nine years. For in-migrants and return migrants, the reference category employed in the models represents the most recent migrants (migrants who have been in the HDSS area for between six months and two years). Migrants who have been in the HDSS areas for ten years or longer are regarded as permanent residents, while very recent in-migrants and return migrants are excluded from the analysis due to the six-month residency threshold described above. For return migrants, the length of time spent outside the HDSS is also controlled for in the models to represent the migrant’s exposure to the destination area prior to return home (with a longer duration of more than three years contrasted with a shorter duration of less than three years). The models therefore control for a net effect of duration of residence, as well as duration of exposure outside the HDSS. The analysis controls for calendar effects in order to capture the dynamics of the AIDS/TB and NCDs epidemics. Time is divided into three-year periods, which ensures that trends in mortality over time are captured for the different diseases and short-term fluctuations reduced. The four HDSS sites contribute different periods to the analysis depending on the length of time since inception. All sites contribute data from the year 2004 onwards. Models include an effect of period where its coefficients represent the average period effect for permanent residents. In order to isolate a migration effect by period, the models control for the interaction between period effect and migration status. These terms represent in-migrants and return migrants in the respective periods who have resided in the HDSS area for between six months and two years following entry. The reference category represents permanent residents for each corresponding period. These terms allow us to test the hypothesis of convergence of in-migrants and return-migrants to that of permanent residents in the population over the observation period. Convergence is observed for a specific disease if the difference in mortality risk between migrants and non-migrants declines over time, implying that migration status has become less relevant to the dynamics of the disease. Conversely, the difference in mortality risk by migrant status can increase over time (diverge), or remain stable, showing no relationship to the epidemic. All analyses are performed separately for males and females because of the difference in migration and mortality patterns between the sexes. Finally, the models control for the following sociodemographic characteristics: age (limited to a 15–60 year age range in accordance with the definition of premature adult mortality) and education level which is time-varying (standardised across the four sites to contrast no formal education with primary, secondary and tertiary-level education). The Fine and Gray statistical model is used for estimation and is based on the cumulative incidence function that does not assume independence of cause of death [38]. This is a superior approach to the regular Cox proportional hazards model which makes the assumption of independence of different causes of death in the analysis of mortality. The use of this method showed only slight differences in the results compared with the method based on simple hazard rates. The statistical model for each large cause of death, and separately for males and females, may be written as follows: Where: H0 is the baseline cumulative incidence function for all the above indicators set to zero (i.e.: representing mortality over the 2010–2012 period for non-migrants with no formal education).