Background: Rwanda has dramatically reduced child mortality, but the causes and sociodemographic drivers for mortality are poorly understood. Methods: We conducted a matched case-control study of all children who died before 5 years of age in eastern Rwanda between 1st March 2013 and 28th February 2014 to identify causes and risk factors for death. We identified deaths at the facility level and via a community health worker reporting system. We used verbal social autopsy to interview caregivers of deceased children and controls matched by area and age. We used InterVA4 to determine probable causes of death and cause-specific mortality fractions, and utilized conditional logistic regression to identify clinical, family, and household risk factors for death. Results: We identified 618 deaths including 174 (28.2%) in neonates and 444 (71.8%) in non-neonates. The most commonly identified causes of death were pneumonia, birth asphyxia, and meningitis among neonates and malaria, acute respiratory infections, and HIV/AIDS-related death among non-neonates. Among neonates, 54 (31.0%) deaths occurred at home and for non-neonates 242 (54.5%) deaths occurred at home. Factors associated with neonatal death included home birth (aOR: 2.0; 95% CI: 1.4-2.8), multiple gestation (aOR: 2.1; 95% CI: 1.3-3.5), both parents deceased (aOR: 4.7; 95% CI: 1.5-15.3), mothers non-use of family planning (aOR: 0.8; 95% CI: 0.6-1.0), lack of accompanying person (aOR: 1.6; 95% CI: 1.1-2.1), and a caregiver who assessed the medical services they received as moderate to poor (aOR: 1.5; 95% CI: 1.2-1.9). Factors associated with non-neonatal deaths included multiple gestation (aOR: 2.8; 95% CI: 1.7-4.8), lack of adequate vaccinations (aOR: 1.7; 95% CI: 1.2-2.3), household size (aOR: 1.2; 95% CI: 1.0-1.4), maternal education levels (aOR: 1.9; 95% CI: 1.2-3.1), mothers non-use of family planning (aOR: 1.6; 95% CI: 1.4-1.8), and lack of household electricity (aOR: 1.4; 95% CI: 1.0-1.8). Conclusion: In the context of rapidly declining childhood mortality in Rwanda and increased access to health care, we found a large proportion of remaining deaths occur at home, with home deliveries still representing a significant risk factor for neonatal death. The major causes of death at a population level remain largely avoidable communicable diseases. Household characteristics associated with death included well-established socioeconomic and care-seeking risk factors.
This study was conducted in two rural Eastern Province hospital catchment areas covering approximately 529,000 individuals. In this intervention area, the Ministry of Health (MOH) facilities have been financially and technically supported by the non-governmental organization Partners In Health/Inshuti Mu Buzima (PIH/IMB) since 2005. In Rwanda, the health system includes three main levels: community, health center, and district hospital. Community health workers (CHWs) provide household level health education, case finding for acute and chronic illness, community IMCI (including diagnosis and treatment of pneumonia, diarrhea, and malaria), female contraception, and linkage to health facilities for prenatal care, deliveries, and other medical services [13]. Each of the 23 health centers serve a catchment area of approximately 20,000–30,000 people and are staffed by general nurses who provide basic diagnostics, outpatient acute services, family planning, prenatal care, and routine deliveries. The average walking distance from households to the nearest health facility is estimated at just over an hour in Kayonza and over an hour and a half in Kirehe [14]. Reflecting national standards, district hospitals in Eastern Province are staffed by general practitioners and nurses who provide secondary care for advanced or inpatient care for patients referred from health centers, including comprehensive obstetric emergencies requiring cesarean section, neonatal care, and inpatient treatment for severe childhood illness and severe malnutrition. We conducted a matched case-control study of all children who died before 5 years of age in the study area between 1st March 2013 and 28th February 2014. We identified deaths using multiple sources including facility registers, community health worker reports, monthly review of CHW-held community death records, and a database from a mobile phone-based reporting system, the Monitoring of Vital Events using Information Technology (MoVe-IT), which was introduced in these two districts in 2012 to improve vital events reporting [15]. After confirming childhood deaths with local CHWs, we conducted interviews with caregivers of the deceased child in their households. Trained data collectors approached caregivers between three weeks to one year following the child’s death. Each case was matched to two controls selected from the nearest households with a child in a comparable age group (for neonates, children aged 1–30 days; for infants, children aged 31 days up to 1 year; and for children older than one year, matched to those between 1 and 5 years) to the deceased child. Neonatal cases without an available control under 30 days of age were matched with infants up to 180 days of age. Prior to the VSA, interviewers asked families of neonatal deaths additional questions in order to screen out potential cases of stillbirth. We obtained written informed consent from the caregivers of the deceased children and those selected as controls. The current caregiver of the child was not necessarily the biological mother if the biological mother was not available or was deceased. Using a questionnaire based on the 2012 World Health Organization verbal autopsy (VA) tool [16] supplemented with questions from the Rwanda MOH’s Under-5 Death Audit Tool and the 2010 Rwanda Demographic and Health Survey, we obtained information on the case or control child’s demographic characteristics, information on the child’s birth, illness, care seeking, and the family’s perceptions of care. We used InterVA4 [17] to determine probable causes of death and cause-specific mortality fractions (CSMF) for each cause of death. The InterVA algorithm uses a range of health indicators taken from interviews as input and applies Bayes’ Theorem to determine the likeliest cause of death. The CSMF is an output from the algorithm and can be interpreted as the total number of deaths attributable to a specific cause. Prevalence of HIV and malaria were entered as “high” in the InterVA model, based on national level facility reporting indicating an estimate of greater than one in 100 deaths due to each of these diseases [18]. We estimated odds ratios for a range of child, caretaker, household, and care-seeking characteristics using conditional logistic regression. We retained variables with p-value less than or equal to 0.2 significance level in the univariate analyses in a multivariate model. We performed multiple imputations to infer values of missing data, which were considered missing completely at random. We used a bidirectional elimination stepwise method, which uses both forward selection and backward elimination in succession to determine optimal variables, to arrive at a final model in which the remaining variables were significant at the α = 0.05 level. Risk factors with potential collinearity were not included in multivariate analysis. We analyzed deaths in neonates (day of life 0 to 28) and non-neonates (day of life 29 to 5 years) separately. We used Global Burden of Disease level 1 categories [19] to organize causes of death by communicable, maternal, neonatal, and nutritional disorders (Group 1), non-communicable diseases (Group 2), and injuries (Group 3). This study was approved by the Rwanda National Ethics Committee and Partners Institutional Review Board under the Population Health Implementation and Training program, a partnership between PIH/IMB, the University of Rwanda, and the Rwanda MOH. All caregivers who participated provided informed consent and were informed that they were able to discontinue participation at any time during the interview.
N/A