Background: Low birth weight (LBW) remains to be a leading cause of neonatal death and a major contributor to infant and under-five mortality. Its prevalence has not declined in the last decade in sub-Saharan Africa (SSA) and Asia. Some individual level factors have been identified as risk factors for LBW but knowledge is limited on contextual risk factors for LBW especially in SSA. Methods: Contextual risk factors for LBW in Ghana were identified by performing multivariable multilevel logistic regression analysis of 6,900 mothers dwelling in 412 communities that participated in the 2003 and 2008 Demographic and Health Surveys in Ghana. Results: Contextual-level factors were significantly associated with LBW: Being a rural dweller increased the likelihood of having a LBW infant by 43% (OR 1.43; 95% CI 1.01-2.01; P-value <0.05) while living in poverty-concentrated communities increased the risk of having a LBW infant twofold (OR 2.16; 95% CI 1.29-3.61; P-value <0.01). In neighbourhoods with a high coverage of safe water supply the odds of having a LBW infant reduced by 28% (OR 0.74; 95% CI 0.57-0.96; P-value <0.05). Conclusion: This study showed contextual risk factors to have independent effects on the prevalence of LBW infants. Being a rural dweller, living in a community with a high concentration of poverty and a low coverage of safe water supply were found to increase the prevalence of LBW infants. Implementing appropriate community-based intervention programmes will likely reduce the occurrence of LBW infants.
This is a population-based study that utilized a combined dataset of the 2003 and 2008 Ghana Demographic and Health Survey (GHDS) to identify contextual risk factors for LBW in Ghana. Comprehensive information on the sampling techniques and procedures for the GDHS data collection have been published elsewhere [37], [38]. Detailed information on all under-five children in the last five years was captured in both surveys and 12,474 households, 11,045 women and 10,114 men were identified for interviews. Face-to-face interviews were conducted for all women aged 15 to 49 years and men aged 15 to 59 years in the sampled households by use of questionnaires covering socioeconomic, demographic and health indicators. Mothers were asked to recall the birth weight of their infants or provide hospital cards to confirm it. In case they could neither recall the birth weight of their infants nor provide a hospital card, they were asked whether the birth weight of their babies was very big, bigger than average, average, smaller than average or very small. For the purpose of the current analysis we classified infants with a birth weight smaller than average and very small as LBW infants [37], [38]. We referred to the primary sampling unit (PSU) of the DHS data as a community. The impact of the community context on low birth weight was examined by considering place of residence (rural/urban), proportion of the community that were having access to healthcare and safe water coverage, and proportion of illiterate (those that can neither read nor write in any language) and those living in extreme poverty in the community (estimated asset index <20% poorest quintile) as contextual factors. Un-confounded effects of contextual risk factors on LBW were estimated after considering potential confounders based on epidemiological knowledge, prior studies, and the available information in the GDHS. Maternal age, parity, birth interval, unplanned pregnancy, ethnicity, anaemia in pregnancy, use of antenatal care, use of antimalarial or mosquito nets during pregnancy, smoking, body mass index, maternal education, occupation, wealth status and marital status were considered as potential confounders in the analysis. Marital status was classified as currently, formerly and never married. Maternal educational attainment was categorized into no education, primary, and secondary or higher education. The GDHS applied an asset-based approach to estimate household wealth status [39], similar to previous studies conducted [40], [41]. In the descriptive analyses, the characteristics of the study population were expressed in terms of numbers and percentages. The prevalences of LBW across the categories of the explanatory variables were estimated in terms of numbers and percentages. We applied a two-level multivariable multilevel logistic regression analysis, fitting three models different models. Model 1 (empty or null model) has no explanatory variable and we used it to decompose the total variance of LBW between the contextual and individual level. Model 2 contained the contextual-level factors and we extended this model to form model 3 by accommodating all the potential confounders (individual-level factors). Sensitivity analysis was conducted to assess whether the results of the analyses were consistent with the group of LBW infants classified to be of very small birth weight. This was necessitated by the potential risk of having a misclassified outcome by maternal self-report. Measures of association between the contextual risk factors and LBW were reported in terms of odds ratios (OR) with their P-values and 95% confidence interval (CI) after considering potential confounders. Random effects were expressed in terms of Area variance (AV), Median Odds Ratio (MOR) and Intra-Cluster Correlation (ICC)/Variance Partition Coefficient (VPC). The fitness of the model was assessed using Akaike Information Criterion (AIC) while Variance Inflation Factor(VIF) was used to check for multicollinarity in the model. Two-tailed Wald test at significance level of alpha equal to 5% was used to determine the statistical significance of the determinants and all the analyses were performed with StataSE 11 software package, StataCorp LP, Texas, United States. Ethical clearance to conduct GDHS was obtained from the Ethics Review Committee, Ghana Health Service, Accra, Ghana and the Ethics Committee of ICF Macro in Calverton, United States. GDHS data are public access data and were made available to us upon request by Measure DHS.
N/A