Background This study seeks to understand distance from health facilities as a barrier to maternal and child health service uptake within a rural Liberian population. Better understanding the relationship between distance from health facilities and rural health care utilization is important for post-Ebola health systems reconstruction and for general rural health system planning in sub-Saharan Africa. Methods Cluster-sample survey data collected in 2012 in a very rural southeastern Liberian population were analyzed to determine associations between quartiles of GPS-measured distance from the nearest health facility and the odds of maternal (ANC, facility-based delivery, and PNC) and child (deworming and care seeking for ARI, diarrhea, and fever) service use. We estimated associations by fitting simple and multiple logistic regression models, with standard errors adjusted for clustered data. Findings Living in the farthest quartile was associated with lower odds of attending 1-or-more ANC checkup (AOR = 0.04, P < 0.001), 4-or-more ANC checkups (AOR = 0.13, P < 0.001), delivering in a facility (AOR = 0.41, P = 0.006), and postnatal care from a health care worker (AOR = 0.44, P = 0.009). Children living in all other quartiles had lower odds of seeking facility-based fever care (AOR for fourth quartile = 0.06, P < 0.001) than those in the nearest quartile. Children in the fourth quartile were less likely to receive deworming treatment (AOR = 0.16, P < 0.001) and less likely (but with only marginal statistical significance) to seek ARI care from a formal HCW (AOR = 0.05, P = 0.05). Parents in distant quartiles more often sought ARI and diarrhea care from informal providers. Conclusions Within a rural Liberian population, distance is associated with reduced health care uptake. As Liberia rebuilds its health system after Ebola, overcoming geographic disparities, including through further dissemination of providers and greater use of community health workers should be prioritized.
This study analyzed cross–sectional data, originally collected in Konobo and Glio–Twarbo Districts, Liberia, for programmatic purposes to inform the design and implementation of a community health worker (CHW) program. The population sampled represented the target group for the CHW program, who reside in rural districts in southeastern Liberia with an estimated population of approximately 31 000 people and a population density of 12 people per square kilometer [22]. The survey was conducted in August–September 2012, which is during Liberia’s rainy season. We selected households with a two–stage, representative cluster sampling method [23] using 2008 Liberian census data. At the first stage, 30 villages in the two districts were selected randomly with probability proportionate to the overall size of the two districts. We excluded Ziah Town, the only locale meeting Liberia’s definition of an urban area (2000 or more people). We also excluded 25 villages because: 19 had less than 20 households, four could only be reached on foot, and 2 were only accessible by canoe. Together, the excluded villages comprised 15% of Konobo’s rural population. At the second stage, a cluster of 20 households was selected by the following method: 1) spinning a laminated paper triangle on the ground in the village’s center as determined by a map of the village’s extent; 2) using a random number generator to select the first dwelling to survey in the direction indicated by the triangle; and 3) continuing to the next closest dwelling until 20 households were sampled. If no members of a household could be located, the next household was substituted. The survey’s purpose was to collect demographic, as well as maternal and child health data prior to implementation of a CHW–based maternal and child health program. We surveyed the woman in each household aged 17–and–older who had most recently completed a pregnancy. Women under 17 were excluded because they are considered minors by Liberian national health policies. The survey contained three modules: 1) basic health indicators 2) maternal health questions about the most recent pregnancy and 3) child health. Only participants who had completed a pregnancy within the last five years answered the maternal health module; however, if no woman in the household had completed a pregnancy in the last five years, the other two modules were still administered. The child health module was completed for each of the respondent’s children who were under five and living in the home. Survey questions were drawn mainly from the 2007 Liberian DHS survey [24]. It was independently translated to Liberian vernacular English by two staff members fluent in the local dialect. Because some participants were expected to speak only Konobo Krahn, a local, non–written language, the survey was administered by bilingual enumerators. All enumerators completed a four–day, pre–study classroom and field training. Following survey administration and entry into a Microsoft Access database, a study supervisor conducted data entry quality assurance by visually checking the first 100 entered surveys. Only one error per 770 fields (0.1% error rate) was identified so the remainder of the surveys were then entered. We also flagged missing and implausible values during data entry and summarization, to request further input from enumerators to clarify and/or update data. Enumerators reported that only one household refused participation. We focused our analysis on maternal and child health care indicators. For maternal health indicators, we selected: 1) one or more antenatal checkups from a health care worker (HCW); 2) four or more antenatal checkups from a HCW; 3) delivery within a health facility attended by any provider; 4) post–natal care (PNC) from a HCW after delivery; and 5) receipt of the full maternal service cascade, defined as at least four ANC checkups, facility–based delivery, and PNC from a HCW. For child health indictors, we selected: care seeking for 1) fever, 2) acute respiratory infection (ARI), and 3) diarrhea if the child experienced those conditions within the two weeks preceding the survey and 4) lifetime receipt of anti–helminthic medication among children over age 1 year. While data were collected on vaccination, we did not include it in this analysis because of low vaccine card possession rates (28%). Providers were categorized as formal biomedical, informal biomedical, and traditional. Formal biomedical providers were defined as registered facilities or HCWs. Informal biomedical services were those acquired from an informal drug store or mobile drug dispenser. Traditional services were defined as those provided by a traditional healer or the receipt of traditional, herbal medicines. (Provider definitions are provided in Online Supplementary Document(Online Supplementary Document), Table s1.) For all outcomes, the primary analysis was whether care was sought from a recommended provider: one likely to have appropriate personnel, diagnostic capabilities, and treatments for that condition within this population. For all maternal health services, the recommended care source was a formal biomedical provider. Formal biomedical providers were also the recommended care source for ARI and fever because, consistent with policy, other providers were not trained to accurately diagnose these conditions [25-26]. For diarrhea, the recommended provider was either a formal or informal biomedical provider because both could be expected to carry oral rehydration salts, the recommended diarrhea treatment [27]. For two childhood illnesses, ARI and diarrhea, we also performed analyses to assess care seeking from any source (an indicator of demand for services) and to describe the sources from which care was sought (including multiple provider types) among those who sought care. The primary predictor variable for all analyses was the road distance from the cluster to Konobo Health Center—the nearest formal health facility, which is located in the district capital, and the only health facility in the study area. Konobo Health Center was able to provide services used as outcome measures (eg, artemesinin combination therapy for fever and oral rehydration solution for diarrhea), and, aside from anti–helminthic treatment, these services generally were not otherwise available at the community level within the formal health care system. Distance was measured with handheld GPS devices (Garmin eTrex 10; Garmin Ltd) by field supervisors during travel to each cluster using recorded GPS tracks. Distance was then divided into quartiles and analyzed as a categorical variable. We adjusted all analyses for socio–demographic characteristics. For all outcomes, these included maternal age (treated as a continuous variable after assessing appropriate fit using the Box–Tidwell test), current maternal marital status (dichotomous), refugee status (dichotomous), maternal education (categorized as “none,” “primary only,” or “any secondary schooling or higher”), and whether the village is accessible by four–wheel motor vehicles (vs only accessible by bicycle or motorbike). For child health outcome models, we also included child age (dichotomous dummy variables for each year) and gender. Finally, we included whether the cluster was located in a gold mining village (dichotomous), because recent gold discoveries in parts of the surveyed area created population movement with uncertain effects on health service access. Standard summary statistical methods were used to describe respondents’ socio–demographic and clinical characteristics. Differences in descriptive characteristics between distance quartiles were tested using design–corrected chi–squared analysis for categorical variables, and linear regression for normally distributed, continuous variables. To estimate associations between distance quartiles and the odds of various outcomes, we fit logistic regression models with standard errors adjusted for clustering. For each primary outcome, two models were constructed. First, we fit simple logistic regression models to estimate associations with each predictor. Next, we fit multiple logistic regression models, including all variables identified as potential confounders in prior literature, to identify independent associations with the outcomes of interest. Observations with missing data were excluded, and completeness of data are shown in Table 1. Distance quartile was included as set of dummy variables for the main analysis; models were re–run with quartiles as an ordinal variable to test for trends between farther distances and outcomes. After regression, we calculated and graphically depicted the adjusted probability of each outcome using average marginal effects, controlling for all other covariates in the full model at their observed levels. Respondents’ socio–demographic characteristics and health conditions by distance quartile ANC – antenatal care, PNC – postnatal care, ARI – acute respiratory infection *Excludes all women whose pregnancies were not carried to full term. †Excludes children under one year of age, who are not eligible for deworming. As a robustness check, we fit the same multivariable models, but excluded refugees and villages with gold mining activities. These populations are the most likely to have moved into or between villages recently, introducing a risk of bias from the possibility that events occurred prior to moving into the study area. Through secondary analyses excluding these populations, the main analyses’ sensitivity to this risk can be assessed. All statistical analyses accounted for the clustered nature of the data using Taylor linearized variance estimation to adjust standard errors. For maternal health outcomes, data were treated as clustered at the village level. Child health outcomes were further clustered at the household level. We used Stata version 13.1 (StataCorp, College Station, TX) for all analyses. Data were analyzed in 2014. Use of these data for research purposes was approved by the ethics review boards at the Liberian Institute for Biomedical Research and Partners Healthcare at Harvard.