Despite concerns about the coexistence of overnutrition, undernutrition and micronutrient deficiencies, which is compositely referred to as the triple burden of malnutrition (TBM), little is known about the phenomenon in sub-Saharan Africa (SSA). We, therefore, aimed to examine the prevalence and investigate the factors associated with TBM in SSA. This study uses cross-sectional survey data collected through the Demographic and Health Surveys (DHS) Program from 2010 to 2019. Data from 32 countries in SSA were used for the analysis. The prevalence of TBM were presented in tables and maps using percentages. The predictors of TBM were examined by fitting a negative log-log regression to the data. The results were then presented using adjusted odds ratios (aORs) at 95% Confidence Intervals (CIs). Out of the 169,394 children, 734 (1%) suffered from TBM. The highest proportion of children with TBM in the four geographic regions in SSA was found in western Africa (0.75%) and the lowest in central Africa (0.21%). Children aged 1 [aOR = 1.283; 95% CI = 1.215–1.355] and those aged 2 [aOR = 1.133; 95% CI = 1.067–1.204] were more likely to experience TBM compared to those aged 0. TBM was less likely to occur among female children compared to males [aOR = 0.859; 95% CI = 0.824–0.896]. Children whose perceived size at birth was average [aOR = 1.133; 95% CI = 1.076–1.193] and smaller than average [aOR = 1.278; 95% CI = 1.204–1.356] were more likely to suffer from TBM compared to those who were larger than average at birth. Children born to mothers with primary [aOR = 0.922; 95% CI = 0.865–0.984] and secondary [aOR = 0.829; 95% CI = 0.777–0.885] education were less likely to suffer from TBM compared to those born to mothers with no formal education. Children born to mothers who attended antenatal care (ANC) had lower odds of experiencing TBM compared to those born to mothers who did not attend ANC [aOR = 0.969; 95% CI = 0.887–0.998]. Children born to mothers who use clean household cooking fuel were less likely to experience TBM compared to children born to mothers who use unclean household cooking fuel [aOR = 0.724; 95% CI = 0.612–0.857]. Essentially, higher maternal education, ANC attendance and use of clean cooking fuel were protective factors against TBM, whereas higher child age, low size at birth and being a male child increased the risk of TBM. Given the regional variations in the prevalence and risk of TBM, region-specific interventions must be initiated to ensure the likelihood of those interventions being successful at reducing the risk of TBM. Countries in Western Africa in particular would have to strengthen their current policies and programmes on malnutrition to enhance their attainment of the SDGs.
This study uses cross-sectional survey data collected through the Demographic and Health Surveys (DHS) Program from 2010 to 2019. The data of 32 countries in SSA (see Figure 1) in the geographic regions, western, eastern, central and southern Africa (see Figure 2), were obtained for analysis. For each geographic region in SSA, countries were considered based on the availability of data on (i) key anthropometrics and background characteristics including sex, height-for-age z-scores, weight-for-height z-scores, weight-for-age z-scores and anaemia level of children under the age of 5 years and their respective mothers; (ii) household characteristics including the background characteristics of household head and household’s access to basic services such as water, toilet facility and cooking fuel, among others. Spatial distribution of the study countries in Sub-Saharan Africa. Source: constructed based on shapefiles from https://tapiquen-sig.jimdofree.com/descargas-gratuitas/mundo/ (1 December 2020) with permission from Carlos Efrain Porto Tapiquen, 2021. Spatial distribution of study countries by regions of Sub-Saharan Africa. Source: constructed based on shapefiles from https://tapiquen-sig.jimdofree.com/descargas-gratuitas/mundo/ (1 December 2020) with permission from Carlos Efrain Porto Tapiquen, 2021. The DHS Program since 1984 has gathered nationally representative data on important population, nutrition and other health indicators of women, men and children at the household level in over 90 low-to-middle-income countries around the world. The program employs standardised protocols and instruments in all its surveys to allow for inter-country comparisons. A two-stage stratified sampling technique involving the demarcation of enumeration areas (clusters) and household selection for interviews was done. Questionnaires are often translated into a country’s major local language, pre-tested and validated before implementation of the surveys. This study included 169,394 child-mother pairs who had complete data for all the variables of interest. We adhered to the strengthening the reporting of observational studies in epidemiology (STROBE) statement for developing this manuscript. The dataset can be accessed freely by download at: https://dhsprogram.com/data/available-datasets.cfm (22 March 2021). The outcome variable TBM was derived from four child malnutrition indicators (stunting, wasting, underweight and anaemia status) and the body mass index (BMI) of their respective mothers. For parsimony and relevance to this study, anaemia levels were measured using four response categories (severe, moderate, mild and not anaemic), which were dichotomized into “anaemic” and “normal”, where anaemic was “severe”, “moderate” and “mild” were combined and coded as “1”, and not anaemic was labelled “normal” and coded “0”. Additionally, following previous studies [13], stunting, wasting, underweight and BMI of the mother were dichotomized and coded as 0 for “normal” and 1 for “stunted”, “wasting”, “underweight” and “obese/overweight”, respectively. Four combinations of these variables—Obese/overweight Mother and Anaemic Child (OM/AC), Obese/overweight Mother and Stunted Child (OM/SC), obese/overweight mother and wasted child (OM/WC), and obese/overweight mother and underweight child (OM/UC)—were made. Following Kumar et al. [2], the binary response variable TBM was measured using response categories “normal” and “TBM”, where the latter included obese/overweight mother with an undernourished child, i.e., children with stunting/wasting/underweight who were also anaemic. The independent variables included in this study were considered based on literature and the availability of data. Previous studies [7,13,14,15,16] have documented several variables associated with child malnutrition spanning child, mother and household characteristics and contextual factors. The relevant variables on child characteristics considered include the age of the child in years (0, 1, 2, 3, 4); sex of child (male, female); birth order (1, 2, 3 and above); perceived birth size (larger than average, average, smaller than average, do not know). With regards to the mothers’ characteristics, the relevant variables include the age of mother in years (15–19, 20–24, 25–29, 30–34, 35–49, 40–44, 45–49); educational attainment (no formal, primary, secondary, higher); employment status (no, yes); antenatal care (ANC) visits (no, yes); postnatal care (PNC) visits (No, Yes). The household characteristics considered are the age of household head (“young adults” for those below 35 years, “middle-aged adults” for 35–55 years and “old-aged adults” for those aged 55 years and above [17]; sex of household head (male, female); household size (“small” for those with 1–5 members, “medium” for 6–10 members and “large” for more than 10 members (see [17,18]); wealth status (poor, middle, rich); access to electricity (no, yes); source of drinking water (improved, unimproved [17,18]); type of toilet facility (improved, unimproved [17,18]); and type of cooking fuel (unclean, clean [19,20]). Urbanicity (urban, rural) and geographic region (western Africa, eastern Africa, central Africa and southern Africa) were the contextual variables included in this study. All statistical analyses were performed using the Stata SE version 14.2 (StataCorp, College Station, TX, USA) software. Before analyses were conducted, the data were first declared as survey data using the Stata command “svyset” specifying the cluster, sample weighting and strata variables. This procedure was done to allow for robust estimation of effect sizes by preventing potential clustering and adjusting for oversampling and undersampling. Descriptive statistics (frequencies and percentages) were used to present the distribution of all variables of interest in tables. To enhance visualization and understanding of the study context, the data were then integrated into a geographic information system (GIS) environment and key variables presented in maps. The Chi-square test of independence was then used to assess the associations between the independent variables and the TBM. All independent variables associated with the TBM were tested for multicollinearity and there was no evidence of multicollinearity (see Table S1). The effects of these independent variables on the TBM were then examined by fitting a negative log-log regression to the data. A negative log-log generalized linear regression was deemed plausible considering the skewed distribution of the TBM to the non-affirmation (99%) [19,21,22]. The results were then presented using adjusted odds ratios (aORs) at 95% Confidence Intervals (CIs). Ethical clearance for DHS reports is taken from the Ethics Committee of ORC Macro Inc. as well as the ethics boards of partner institutions (e.g., ministries of health) of the studied countries. The DHS protocols guarantee that ethical standards for the protection of respondents’ anonymity, privacy and confidentiality are adhered to. Inner City Fund International also ensures that the survey meets the United States Department of Health and Human Services’ regulations for the respect of human subjects. The study used secondary datasets; hence, no further ethical approval was required. The datasets can be accessed freely via download. Further information about the DHS data usage and ethical standards is available at http://goo.gl/ny8T6X (22 March 2021).