Background: Under-five mortality in Kenya has declined over the past two decades. However, the reduction in the neonatal mortality rate has remained stagnant. In a country with weak civil registration and vital statistics systems, there is an evident gap in documentation of mortality and its causes among low birth weight (LBW) and preterm neonates. We aimed to establish causes of neonatal LBW and preterm mortality in Migori County, among participants of the PTBI-K (Preterm Birth Initiative-Kenya) study. Methods: Verbal and social autopsy (VASA) interviews were conducted with caregivers of deceased LBW and preterm neonates delivered within selected 17 health facilities in Migori County, Kenya. The probable cause of death was assigned using the WHO International Classification of Diseases (ICD-10). Results: Between January 2017 to December 2018, 3175 babies were born preterm or LBW, and 164 (5.1%) died in the first 28 days of life. VASA was conducted among 88 (53.7%) of the neonatal deaths. Almost half (38, 43.2%) of the deaths occurred within the first 24 h of life. Birth asphyxia (45.5%), neonatal sepsis (26.1%), respiratory distress syndrome (12.5%) and hypothermia (11.0%) were the leading causes of death. In the early neonatal period, majority (54.3%) of the neonates succumbed to asphyxia while in the late neonatal period majority (66.7%) succumbed to sepsis. Delay in seeking medical care was reported for 4 (5.8%) of the neonatal deaths. Conclusion: Deaths among LBW and preterm neonates occur early in life due to preventable causes. This calls for enhanced implementation of existing facility-based intrapartum and immediate postpartum care interventions, targeting asphyxia, sepsis, respiratory distress syndrome and hypothermia.
We conducted a descriptive cross-sectional study for all preterm and low birth weight (LBW) neonatal deaths that occurred January 1, 2017, to December 31, 2018 in 17 selected health facilities in Migori County, Western Kenya. The study population included a cohort of preterm and LBW neonates enrolled in an implementation science study conducted by the Preterm Birth Initiative (PTBi), a collaboration among Kenya Medical Research Institute (KEMRI), Makerere University and University of California, San Francisco. The initiative employed a package of selected interventions to improve birth outcomes and reduce morbidity and mortality of preterm and low birth weight babies in selected health facilities in Migori County, Kenya and Busoga region in Uganda. The study areas and the intervention package are described in detail in the published study protocol [21]. In Kenya, the 17 selected health facilities in Migori County, included one county referral hospital, 14 government health facilities and two missionary hospitals. The selected facilities were high volume in terms of annual deliveries compared to other facilities within the county. All babies born with birth weight < 2500 g (LBW); or birth weight ≥ 2500 and < 3000 g with documented or calculated gestational age less than 37 weeks (preterm) were eligible for enrollment into the study. Upon consenting, mothers who delivered live low birth weight and preterm babies were followed up to determine status of the baby at day 28. The baby’s status was recorded in the PTBi database. The caregivers of babies who had died within 28 days of life were invited to participate in the VASA study. Babies who died before discharge were identified from the health facility maternity registers and the ones who died post-discharge were identified from the PTBi database. We abstracted identifying contact information of the deceased neonates onto the VASA study locator form. The provided phone contact and/or physical location information was used to reach out to the mothers/caregivers of the deceased neonates for an appointment. In case the contact information was missing, or the provided contact was unreachable after three phone attempts, Community Health Volunteers helped to trace the study participant within the indicated village of residence. A caregiver was declared lost to follow up after 3 attempts using all possible methods to trace her. The identified households were visited by research assistants trained on VASA to administer the VASA questionnaire for data collection. This was done at least two weeks after the death of the baby, to allow for the mourning period. The appropriate respondent was the person involved in primary care for the neonate before he/she died. In most cases this would be the mother, however, secondary respondents were allowed, if necessary, to capture information on all phases of the illness, including the mother’s pregnancy and delivery, during which she may herself have been too ill and unaware of the neonates’ condition. For respondents who had multiple neonatal deaths, the questionnaire was administered for each baby except for the socio-demographic section. The VASA questionnaire used for data collection was adapted from the WHO standardized verbal autopsy questionnaire for deaths that occur before 28 days [22] and social autopsy questionnaire from the Child Health Epidemiology Reference Group (CHERG) [23]. The questionnaire is divided into three main sections; the first section covers general information for deceased neonates, demographics of the deceased, and household and socio-demographic characteristics of the respondent. The second section covers the circumstances surrounding the child’s death, including signs and symptoms of any illness, the caregiver’s perception of the illness, actions taken and care sought. Any barriers to seeking care are also noted. In addition to neonatal deaths, this section also asks questions about the maternal history, including the mother’s antenatal care and care-seeking for obstetric complications, and about newborn care before and during the illness. The third section is an open narrative that allows the caregiver to narrate about the baby’s illness and events preceding death in his or her own words. Any health records provided by the caregiver describing the treatment the child received were also noted. To assign a probable cause of death, two clinicians trained on the WHO International Classification of Diseases (ICD 10) independently reviewed the signs and symptoms recorded on the questionnaires. If the same diagnosis was reached by the two physicians, this was accepted as the probable cause of death. If there was a discrepancy between diagnoses, an independent third physician was involved to determine a consensus on the probable cause of death. Completed questionnaires were checked for completeness, validity and reliability. Data were entered into a Microsoft Access database then transferred into Stata 12 statistical software for cleaning and analysis. Descriptive statistics presented measures of central tendencies for quantitative data, including mean (standard deviation), median (range) and frequency distributions (frequencies and percentages). Data were presented in tables and graphs. Reporting of the study conforms to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement [24].