Background: Maternal mortality in Kenya increased from 380/100000 live births to 530/100000 live births between 1990 and 2008. Skilled assistance during childbirth is central to reducing maternal mortality yet the proportion of deliveries taking place in health facilities where such assistance can reliably be provided has remained below 50% since the early 1990s. We use the 2008/2009 Kenya Demographic and Health Survey data to describe the factors that determine where women deliver in Kenya and to explore reasons given for home delivery.Methods: Data on place of delivery, reasons for home delivery, and a range of potential explanatory factors were collected by interviewer-led questionnaire on 3977 women and augmented with distance from the nearest health facility estimated using health facility Global Positioning System (GPS) co-ordinates. Predictors of whether the woman’s most recent delivery was in a health facility were explored in an exploratory risk factor analysis using multiple logistic regression. The main reasons given by the woman for home delivery were also examined.Results: Living in urban areas, being wealthy, more educated, using antenatal care services optimally and lower parity strongly predicted where women delivered, and so did region, ethnicity, and type of facilities used. Wealth and rural/urban residence were independently related. The effect of distance from a health facility was not significant after controlling for other variables. Women most commonly cited distance and/or lack of transport as reasons for not delivering in a health facility but over 60% gave other reasons including 20.5% who considered health facility delivery unnecessary, 18% who cited abrupt delivery as the main reason and 11% who cited high cost.Conclusion: Physical access to health facilities through distance and/or lack of transport, and economic considerations are important barriers for women to delivering in a health facility in Kenya. Some women do not perceive a need to deliver in a health facility and may value health facility delivery less with subsequent deliveries. Access to appropriate transport for mothers in labour and improving the experiences and outcomes for mothers using health facilities at childbirth augmented by health education may increase uptake of health facility delivery in Kenya. © 2013 Kitui et al.; licensee BioMed Central Ltd.
The 2008/2009 KDHS is a nationally representative household-based survey, with interviewer administered questionnaires used to obtain a range of detailed health related and demographic information, and focussing on maternal and child health. Using the 1999 Kenya Population and Housing Census, a two-stage cluster sampling technique was used to sample 10000 households from 400 clusters and 8444 women aged 15–49 years and men age 15–54 years were interviewed. Details of the survey, sampling approach, including the questionnaires used, have been reported elsewhere [19]. In this study, after a description of all deliveries within the five years preceding the survey, we base the rest of the analysis on data for the most recent delivery for each mother. The KDHS data collection procedures were approved by the ICF Macro (Calverton, Maryland), Institutional Review Board and the Scientific and Ethical Review Committee of the Kenya Medical Research Institute (KEMRI) and informed consent was obtained from respondents at the start of the individual interviews [19]. Permission to use these data was obtained from ‘Measure DHS’ [20]. No further ethical approval was necessary since the study was based on anonymous public use data with no identifiable information on survey respondents. Women were asked about “place of delivery” and whether this was “at a health facility”, “at home” or “en route to a healthcare provider”. The latter two responses were combined together for this analysis given that the latter group was small (1.14% (n=45)) to be analysed separately and reasoned that this may reflect women who attempt to deliver at home and only decide to go to a health facility much later. A subsidiary question asked for the “main reason for home delivery” with women selecting their main reason from the following list of ten options: facility too far/no transport, not necessary, abrupt delivery, cost too much, facility not open, don’t trust facility, not customary, family did not allow, no female provider, and other (unspecified). From the questionnaire data available, we selected to analyse 16 explanatory variables which, based on a review of literature, have potential to influence place of delivery: maternal age, education, parity, marital status, number of ANC visits, healthcare provider at ANC, health facility of ANC, insurance, household size, relationship to household head, wealth index, presence of co-wife, rural/urban residence, ethnic group, region of residence and religion. These were classified for analysis under four broad themes: (1) socio-cultural factors, (2) perceived benefit/need of skilled attendance (3) physical accessibility, and (4) economic accessibility in a framework adapted by Gabrysch et al. (2009) from the Thaddeus and Maine’s three delays model (delay in decision to seek care, in reaching care and in receiving care) of delivery care use [21]. The wealth index, a proxy measure of a household’s long-term standard of living, is based on consumer goods, dwelling characteristics, type of drinking water source, toilet facilities, among others. Details of the philosophy and construction of the indices are discussed in detail by Measure DHS [22]. Maternal ages at delivery were computed from the mothers’ and babies’ birthdates. The distance of each household from the nearest health facility was calculated using GPS coordinates for households from the KDHS and for health facilities from the 2008 Kenya Health Facility Database obtained from Malaria Atlas Project (MAP) and developed by the Kenya Medical Research Institute (Kemri)-University of Oxford-Welcome Trust Collaborative Programme [23]. The Kenya Essential Package for Health as contained in The Second National Health Sector Strategic Plan of Kenya (NHSSP II), documents that all health facilities from level 2 dispensaries and clinics provided delivery services supervised by skilled health staff in 2004 [24] and therefore all health facilities contained in the health facility database are presumed to serve as a first point of contact in the healthcare system for a woman in labour. The household GPS coordinates were slightly displaced for each household after the survey to within 0-5 km in rural areas, 0-2 km in urban areas and 0-10 km in 1% of sparsely populated areas of Kenya to maintain confidentiality for respondents [25]. The bivariate associations between each potential risk factor and delivery at a health facility were explored, and those significant at p<0.05 were entered together into a multiple logistic regression model. Non-significant explanatory variables were removed from the model, and those excluded were re-entered in the model one at a time in a recursive process until all variables in the model were statistically significant and all excluded variables were not statistically significant, using the Wald test or Wald test for trend as appropriate. Pearson’s correlation matrix was used to check for collinearity between all variables and models fitted with and without adjustment for highly correlated variables. To better understand the strongest effects, we explored associations between reasons given for home delivery and the factors that independently predicted place of delivery using cross-tabulation and chi-squared tests. All analyses were conducted in Stata version 11.2
N/A