Background: In malaria-endemic settings, a small proportion of children suffer repeated malaria infections, contributing to most of the malaria cases, yet underlying factors are not fully understood. This study was aimed to determine whether undernutrition predicts this over-dispersion of malaria infections in children aged 6-18 months in settings of high malaria and undernutrition prevalence. Methods: Prospective cohort study, conducted in Mangochi, Malawi. Six-months-old infants were enrolled and had length-for-age z-scores (LAZ), weight-for-age z-scores (WAZ), and weight-for-length z-scores (WLZ) assessed. Data were collected for ‘presumed’, clinical, and rapid diagnostic test (RDT)-confirmed malaria until 18 months. Malaria microscopy was done at 6 and 18 months. Negative binomial regression was used for malaria incidence and modified Poisson regression for malaria prevalence. Results: Of the 2723 children enrolled, 2561 (94%) had anthropometry and malaria data. The mean (standard deviation [SD]) of LAZ, WAZ, and WLZ at 6 months were − 1.4 (1.1), − 0.7 (1.2), and 0.3 (1.1), respectively. The mean (SD) incidences of ‘presumed’, clinical, and RDT-confirmed malaria from 6 to 18 months were: 1.1 (1.6), 0.4 (0.8), and 1.3 (2.0) episodes/year, respectively. Prevalence of malaria parasitaemia was 4.8% at 6 months and 9.6% at 18 months. Higher WLZ at 6 months was associated with lower prevalence of malaria parasitaemia at 18 months (prevalence ratio [PR] = 0.80, 95% confidence interval [CI] 0.67 to 0.94, p = 0.007), but not with incidences of ‘presumed’ malaria (incidence rate ratio [IRR] = 0.97, 95% CI 0.92 to 1.02, p = 0.190), clinical malaria (IRR = 1.03, 95% CI 0.94 to 1.12, p = 0.571), RDT-confirmed malaria (IRR = 1.00, 95% CI 0.94 to 1.06, p = 0.950). LAZ and WAZ at 6 months were not associated with malaria outcomes. Household assets, maternal education, and food insecurity were significantly associated with malaria. There were significant variations in hospital-diagnosed malaria by study site. Conclusion: In children aged 6-18 months living in malaria-endemic settings, LAZ, WAZ, and WLZ do not predict malaria incidence. However, WLZ may be associated with prevalence of malaria. Socio-economic and micro-geographic factors may explain the variations in malaria, but these require further study.
The iLiNS-DOSE and iLiNS-DYAD-M studies were conducted in four facilities: one public district hospital (Mangochi), one mission hospital (Malindi), and two rural public health centres (Lungwena and Namwera) in Mangochi District, Southern Malawi. The total catchment population of 180,000 largely subsisted on farming and fishing. Mangochi site is low-lying at an altitude of ~ 485 m above sea level, but traversed by the Shire River (the largest river in Malawi). Two of the study sites (Lungwena and Malindi) are also low-lying with the similar altitude along the eastern shore of Lake Malawi. In contrast, Namwera lies at the top of Namwera Hills, bordering Mozambique, at an altitude of ~ 900 m above sea level and is far from the large water bodies. Namwera experienced higher rainfall and cooler temperatures than the other three study sites [18, 19]. In Malawian children aged < 5 years, the prevalence of malaria (by microscopy), diarrhoea and acute respiratory infections were 24.3%, 22% and 5%, respectively, with seasonal fluctuations [2, 20]. The sub-tropical climate comprising a warm, wet season from November to April, a cool, dry winter season from May to August, and a hot, dry season from September to October [21] is favourable for the Anopheles mosquitoes which transmit Plasmodium parasites. Plasmodium falciparum is the most dominant and causes about 98% of all malaria infections in Malawi. Malaria transmission occurs throughout the year with highest transmission rates occurring between October and April (rainy season), mainly in low-lying and high temperature areas. The data for this analysis were taken from the iLiNS-DOSE and iLiNS-DYAD-M studies—two large community-based randomized controlled trials conducted in rural Malawi. In the iLiNS-DOSE study, 6-months old children were randomly allocated to one of five intervention groups provided with different doses or formulations of LNS or to a control group that did not receive LNS during the 12-month study period, between November 2009 and May 2012. In the iLiNS-DYAD-M study, pregnant women 70 µmol/mol haem [28]. HFIAS z-scores were generated by summing the value of responses to nine questions regarding food insecurity: the higher the score, the higher degree of food insecurity in the last 4 weeks [27]. Household asset scores were defined as the principal components score based on baseline ownership of a set of assets and household quality: the higher the score, the better the living conditions. Number of children aged < 5 years was defined as number of children below the age of five who were part of the participant’s household at 6 months. All children who had malaria data at any point from age 6 to 18 months were included in the analysis. Negative binomial regression was used to assess the association of LAZ, WAZ, and WLZ (independent variables) with the incidence of malaria (dependent variable), and Poisson regression (with a robust variance estimator) [29] to assess the association of LAZ, WAZ, and WLZ with prevalence of malaria parasitaemia. To study the independent effect of various predictors, multivariate regression models were constructed that included potential predictors collected at 6 months. The following were potential predictors: household asset scores, maternal age (centred around the mean), and education, number of children aged 0.5), the one that was less strongly associated with the outcomes was dropped. The results are reported as incidence rate ratios [IRR] or prevalence ratio [PR] and their 95% confidence intervals (95% CI) at p = 0.05. Robust standard errors were computed to adjust for correlation of recurrent malaria episodes in a single child. Other potential predictors were considered including immunization status, markers of inflammation (C-reactive protein and alpha1-acid glycoprotein concentrations) at 6 months, maternal and child malaria immunity, and maternal HIV status. However, these variables were available only from a subsample of the two studies, hence were eventually dropped from the final models to maximize the sample size. Furthermore, these variables showed little effect on the model during sensitivity analysis. Stata version 14 (StataCorp, Texas, USA) was used for the main analyses.
N/A