Background: Stunting results from decreased food intake, poor diet quality, and a high burden of early childhood infections, and contributes to significant morbidity and mortality worldwide. Although food insecurity is an important determinant of child nutrition, including stunting, development of universal measures has been challenging due to cumbersome nutritional questionnaires and concerns about lack of comparability across populations. We investigate the relationship between household food access, one component of food security, and indicators of nutritional status in early childhood across eight country sites.Methods: We administered a socioeconomic survey to 800 households in research sites in eight countries, including a recently validated nine-item food access insecurity questionnaire, and obtained anthropometric measurements from children aged 24 to 60 months. We used multivariable regression models to assess the relationship between household food access insecurity and anthropometry in children, and we assessed the invariance of that relationship across country sites.Results: Average age of study children was 41 months. Mean food access insecurity score (range: 0-27) was 5.8, and varied from 2.4 in Nepal to 8.3 in Pakistan. Across sites, the prevalence of stunting (42%) was much higher than the prevalence of wasting (6%). In pooled regression analyses, a 10-point increase in food access insecurity score was associated with a 0.20 SD decrease in height-for-age Z score (95% CI 0.05 to 0.34 SD; p = 0.008). A likelihood ratio test for heterogeneity revealed that this relationship was consistent across countries (p = 0.17).Conclusions: Our study provides evidence of the validity of using a simple household food access insecurity score to investigate the etiology of childhood growth faltering across diverse geographic settings. Such a measure could be used to direct interventions by identifying children at risk of illness and death related to malnutrition. © 2012 Psaki et al; licensee BioMed Central Ltd.
We conducted our study at the eight field sites in the Malnutrition and Enteric Infections: Consequences for Child Health and Development (MAL-ED) Network cohort study. The MAL-ED Network, comprising researchers from thirteen academic and research institutions, aims to explore the relationship between malnutrition and intestinal infections and their consequences for various aspects of child growth and development. Sites are utilizing a standardized protocol for the collection of twice-weekly diarrhea surveillance information, monthly anthropometry, urine for gut function and iodine status, stool for enteric pathogens, blood for micronutrients and vaccine response, and cognitive development assessments. Study sites are located in rural, urban, and peri-urban areas of Bangladesh, Brazil, India, Nepal, Pakistan, Peru, South Africa and Tanzania (See Additional file 1). The MAL-ED study began enrolling pregnant women in 2009, and plans to follow a cohort of approximately 200 newborns per site for up to 36 months. We report on pilot study activities that preceded enrollment for the cohort study, aimed at characterizing the relationship between food access and child nutritional status. In preparation for the MAL-ED cohort study, we sought to develop and test cross-country indicators of food access insecurity and socioeconomic status (SES). We administered a standardized survey including demographic, SES, and food access questions to 100 households in each of the eight field sites between September 2009 and August 2010. Households were randomly selected from census results collected within the previous year at each study site. Households were eligible to participate if they were located within the MAL-ED study area and had an index child aged 24 to 60 months. Data collection lasted approximately two to four weeks in each site. We obtained ethical approval from the Institutional Review Boards at each of the participating research sites, at the Johns Hopkins Bloomberg School of Public Health (Baltimore, USA) and at the University of Virginia School of Medicine (Charlottesville, USA). Demographic and SES questions were adapted from the most recent Demographic and Health Surveys [16] in collaboration with site investigators. Questions focused on age and education of the head of household and child’s mother, as well as the mother’s fertility history. The SES section included a series of questions on household assets, housing materials, and water and sanitation facilities. The questionnaire was developed in English, and then translated into local languages by site investigators using appropriate local terms (See Additional file 2). The questionnaire was accompanied by standard operating procedures based on existing guidelines for administration of the HFIAS [17]. Field supervisors trained field workers prior to survey administration, and used locally appropriate management techniques to support complete, accurate and timely data collection, including weekly review of all data to ensure quality. To assess food access insecurity, our survey included the nine-question HFIAS (See Online Supplement), adapted in 2006 by the Food And Nutrition Technical Assistance (FANTA) project for use in low resource settings [18]. Although this scale has been validated and adapted in individual country settings through previous studies [18-20], to our knowledge it has not been used in its original form in a multi-country study. The nine-item scale uses a four-week recall period and captures three dimensions of the access component of household food insecurity: anxiety and uncertainty about household food access (item 1); insufficient quality (items 2–4); and insufficient food intake and its physical consequences (items 5–9) [18]. Responses on the nine items were summed to create the food access insecurity score, with a minimum score of 0 indicating the most food access secure households, and a maximum score of 27 indicating the most food access insecure households. We also categorized households into four groups [17]: food access secure, and mildly, moderately and severely food access insecure. We measured height and weight in one child aged 24 to 60 months in each participating household. When multiple children in this age range lived in one household, we randomly chose one child to avoid intra-household correlation in our data. Trained field staff measured standing height to the nearest 0.1 cm using a locally produced platform with sliding headboard. Digital scales were used to measure weight to the nearest 100 grams. Height-for-age (HAZ) and weight-for-height (WHZ) Z-scores were calculated based on World Health Organization child growth standards [21]. We defined stunting and wasting as a HAZ and WHZ that were two standard deviations below the WHO standard, respectively. Exploratory analyses involved examination of the distribution of each variable and inter-relationships between variables within and across sites. We then conducted a series of pooled analyses, including data from all eight country sites. We used a generalized additive model with a smoothing spline to characterize the relationship between food access insecurity and nutritional indicators. Our findings indicated that the pooled relationship between food access insecurity and both nutritional indicators was approximately linear, indicating the appropriateness of linear regression models. We then examined bivariate relationships between food access insecurity, HAZ, WHZ and SES indicators. Last, we used linear regression to model the relationship between food access insecurity and each nutritional outcome in the pooled sample of households, adjusted for child age, sex, maternal education, household bank account, people per room in the household, and access to an improved water source and sanitation facilities. We selected these SES indicators based on their relevance to the outcomes and sufficient variation within each country site. We compared the results to a model including a household SES score generated through principal components analysis based on 17 indicators of household wealth. The results were similar, and we felt that the selection of individual indicators provided more interpretable information on the relationships between food access insecurity and SES. To control for differences in baseline levels of HAZ and WHZ, we included indicator variables for all but one country. We conducted a likelihood ratio test comparing a full model with interactions between food access insecurity score and the eight country dummy variables with a reduced model lacking those interactions. The results of this test provided evidence of the extent of heterogeneity in the relationship between food access insecurity and HAZ across countries. We used R (http://www.r-project.org) and STATA 12 (STATA Corp., College Station, USA) for statistical analysis.