Background: Surgical care is an important, yet often neglected component of child health in low- and middle-income countries (LMICs). This study examines the potential impact of scaling up surgical care at first-level hospitals in LMICs within the first 20 years of life. Methods: Epidemiological data from the global burden of disease 2019 Study and a counterfactual method developed for the disease control priorities; 3rd Edition were used to estimate the number of treatable deaths in the under 20 year age group if surgical care could be scaled up at first-level hospitals. Our model included three digestive diseases, four maternal and neonatal conditions, and seven common traumatic injuries. Results: An estimated 314,609 (95% UI, 239,619–402,005) deaths per year in the under 20 year age group could be averted if surgical care were scaled up at first-level hospitals in LMICs. Most of the treatable deaths are in the under-5 year age group (80.9%) and relates to improved obstetrical care and its effect on reducing neonatal encephalopathy due to birth asphyxia and trauma. Injuries are the leading cause of treatable deaths after age 5 years. Sixty-one percent of the treatable deaths occur in lower middle-income countries. Overall, scaling up surgical care at first-level hospitals could avert 5·1% of the total deaths in children and adolescents under 20 years of age in LMICs per year. Conclusions: Improving the capacity of surgical services at first-level hospitals in LMICs has the potential to avert many deaths within the first 20 years of life.
Data from the 2019 Global Burden of Diseases (GBD) Study [15] was used to estimate the number of deaths that could be averted in the under-20 year age group by scaling up surgical care provided at first-level hospitals. Our approach was similar to that used to estimate the number of preventable surgical deaths in Chapter 2 of Disease Control Priorities, 3rd Edition (DCP3), Volume 1: Essential Surgery [12]. This methodology assumes a basic surgical package3 with various therapeutic interventions that can be provided at first-level hospitals [16–18]. Our model included the following, with 2019 GBD cause codes shown in parenthesis: This approach recognizes that some conditions, such as maternal hemorrhage and neonatal encephalopathy, are not entirely amenable to surgical care and hence require adjustments to limit the effect of surgery [12, 19]. Adjustments for the effect of surgical care were based on information provided in Annex 2E of Chapter 2 of the Essential Surgery Volume of DCP3 [12] and are included in Additional file 1 of the supplemental information. The overall concept of our approach was to split the reported deaths from surgical conditions into surgically treatable and non-treatable deaths. Treatable deaths were calculated as follows: where DEATHScurrent denotes the deaths reported in GBD 2019, and DEATHScounterfactual represents the estimated number of deaths if delivery of surgical care had existed in a “counterfactual” state, which is described as the state in which the entire population has access to appropriate and safe surgical care deliverable at first-level hospital. To make these calculations, we downloaded age and income-specific death rates, uncertainty intervals, and population data from the Institute of Health Metrics and Evaluation using the GBD Results tool [20]. The treatable death rates for the World Bank LMIC income groups (low-income, lower-middle-income and upper middle income) were calculated by subtracting the cause-specific high-income death rates from the cause-specific rates in the low- and middle-income income groupings using the following formula: where ADRagegroupincomegroup is the cause-specific treatable death rate for each age and income group, EDRagegroupincomegroup the existing cause-specific death rates reported in GBD 2019, and CDRagegroupincomegroup the cause-specific death rates for the counterfactual state. We assumed that the lowest fatality rate to be in the high-income group and therefore representative of CDRagegroupincomegroup. The number of treatable deaths for each age and income group was determined by multiplying the cause-specific treatable death rates by the population in each category (Additional file 2). Finally, we corrected for the effect of surgical care and variability in access by multiplying the number of treatable deaths times the correction factors listed in Additional file 1.