Objectives. This study sought to determine the prevalence and factors associated with group B streptococcal anogenital colonization among pregnant women attending antenatal care at Mbarara Regional Referral Hospital, a tertiary hospital. Methods. Cross-sectional study where 309 pregnant women ≥ thirty-five weeks of gestation attending antenatal clinic were consecutively recruited between January and March 2015. Anovaginal swabs were collected and tested qualitatively using rapid visual immunoassay GBS test kits for presence of GBS antigens. Data was analyzed using STATA version 12. In univariate analysis, GBS colonized mothers were presented as percentages and numbers, and in multivariate analysis logistic regression analysis was applied to determine the associations of exposure variable and GBS colonization; a value of less than 0.05 was considered significant. Results. Mothers’ median age was 25 years, 14.6% mothers being obese. GBS prevalence was 28.8%, 95% CI: 23.7-33.9. Obesity was the only significant factor associated with anogenital GBS colonization with odds ratio of 3.78, 95% CI: 1.78-8.35, a p value of 0.001. Maternal ages, educational level, residence, and gravidity were not associated with GBS anogenital colonization. Conclusion. Group B streptococcal anogenital colonization among pregnant women attending antenatal care at tertiary hospital, in Southwestern Uganda, is high.
This was a cross-sectional study among pregnant women at ≥35 weeks of gestation, attending antenatal clinic at Mbarara Regional Referral Hospital conducted over a period of 3 months between January and March 2015. Mothers who were at ≥35 weeks of gestation and had consented to participate were included while those who had been on antibiotics treatment within the last two weeks prior to study were excluded. Participants were recruited using a consecutive sampling technique until the sample size was achieved. The principal investigator reviewed the antenatal cards of the antenatal clients as they came to the observation area for blood pressure and weight measurements. Using each participant’s last normal menstruation period, weeks of gestation were calculated using Naegele’s formula. Those at ≥35 weeks of gestation had an informed consent sought; those willing to participate in the study then signed or thumbprinted on the consent form. A pretested questionnaire was then administered, physical examination was performed, and anogenital specimen was collected using a Dacron swab. Participant’s sociodemographic data, history of current pregnancy, previous miscarriages, preterm labor, and stillbirths data were gathered. A general physical examination, obstetrical examination, collection of study samples, and completion of the routine ANC visit for that day followed. The swabs were collected as follows; after additional counseling prior to collection of anogenital samples, the principal investigator wore a pair of latex gloves and, in the presence of a female nurse as a chaperone, asked the mother to lie in the dorsal position. While at the foot of the bed the study principal investigator, with the help of a research assistant, would examine the external genitalia and vaginal introitus, after separation of the labia. One sealed sterile swab was used to swab the lower vagina (without speculum placement) and a second sealed sterile swab was used to swab the anal canal. The swabs were then labeled and immediately processed in the clinic by the principal investigator with the assistance of a research assistant according to the manufacturer’s instructions (Safecare Biotech, (Hangzhou) Co., Ltd.) Specimens, reagents, and/or controls were processed at room temperature (15–30°C): The rapid strep B test kit was removed from its sealed pouch and placed on a clean level surface. The device was labeled at this point with patient or control identification. The assay was performed within 10 minutes of swab collection. Three drops (approximately 120 μL) of extracted solution from the extraction tube were added to the sample well on the test device. Trapping air bubbles in the specimen well (S) was avoided, and no solution was added to the observation window. After ten minutes of waiting for the appearance of colored band(s), results were read and interpreted as follows: Mothers were given their results 20 minutes after picking their anogenital swabs and those who tested positive for GBS were counseled about the result and indicated on their antenatal care card to act as notification to their primary care obstetricians. Those who tested GBS negative were given their results and discharged from the study. To avoid double recruitment a GBS+ signature was put onto the antenatal care card of the client indicating that the client was a participant in the GBS study. Results were stored by the principal investigator with limited access for other personnel. Data was collected using a pretested, coded questionnaire to gather sociodemographic and other relevant history data and findings on physical examination. The antenatal profiles, such as HIV status, were collected from patients’ files/antenatal cards while results of anogenital specimens were obtained from the laboratory request forms. Data collection tools were initially piloted on 50 participants and adjustments were made accordingly in consultation with the study team. These were not included in final analysis. Data was collected by the principal investigator and trained research assistants. The dependent variable was maternal GBS anogenital colonization at MRRH while independent variables were constituted by information collected on socio demographics, obstetrical factors like gravidity, history of early neonatal febrile illness or death, prolonged rupture of membranes, preterm delivery in the previous pregnancies, and other factors like HIV serostatus, BMI (calculated as weight of the mother in kilograms divided by her height in meters squared), and history of herbal medicine use during the current pregnancy. Data was entered and cleaned using Epi Info version 7, analyzed using STATA version 12, where in univariate analysis GBS colonized mothers were presented as percentages and numbers and in multivariate analysis logistic regression analysis was applied to determine the associations of exposure variable and GBS colonization, and a value of less than 0.05 was considered significant. A pretested questionnaire was used to collect data. Every 20th test kit was read by a laboratory technologist from the Department of Microbiology, MUST, who was not part of the study. We obtained informed consent and the study was approved by Mbarara University of Science and Technology institutional review board.
N/A