Diarrhoea is an important cause of death and illness among children in developing countries; however, it remains controversial as to whether diarrhoea leads to stunting. We conducted a pooled analysis of nine studies that collected daily diarrhoea morbidity and longitudinal anthropometry to determine the effects of the longitudinal history of diarrhoea prior to 24 months on stunting at age 24 months. Data covered a 20-year period and five countries. We used logistic regression to model the effect of diarrhoea on stunting. The prevalence of stunting at age 24 months varied by study (range 21 – 90%), as did the longitudinal history of diarrhoea prior to 24 months (incidence range 3.6 – 13.4 episodes per child-year, prevalence range 2.4 – 16.3%). The effect of diarrhoea on stunting, however, was similar across studies. The odds of stunting at age 24 months increased multiplicatively with each diarrhoeal episode and with each day of diarrhoea before 24 months (all P 4 and those with a HAZ <−7. We chose a HAZ <−7 as the lower cut-off because at least one quarter of children from the ‘Bangladesh 1978’ study had a HAZ r × HAZt1, where HAZ24 was the child’s HAZ at 24 months, HAZt1 was the child’s HAZ at t1 months and r was the correlation coefficient between HAZ24 and HAZt1 for the subset of children who were stunted at t1 months and not stunted at 24 months. That is, we did not include children for whom HAZ24 ≤ r × HAZt1 in the category of those who recovered. The objective of our analysis was to determine the effect of diarrhoea prior to 24 months of age on stunting at 24 months of age. The primary outcome in our analyses was the prevalence of stunting at 24 months. Because not all children were measured at exactly 24 months of age, we accepted the HAZ measurement at the oldest age in the interval between 18 and 24 months of age as the HAZ measurement at 24 months. We selected 24 months of age as the reporting age for this analysis because the majority (54%) of children from all nine studies contributed data at this age. In contrast, only 45% of children contributed data at 3 years of age and 28% of children contributed data at 5 years of age. We first conducted exploratory data analysis to determine the shape of the relationship between the cumulative burden of diarrhoea prior to 24 months of age and the log odds of stunting at 24 months. We then used logistic regression to model the prevalence of stunting at 24 months as a function of the cumulative burden of diarrhoea prior to 24 months. In our logistic regression model, the outcome was coded as 1 if a child was stunted at 24 months of age and coded as 0 if otherwise. We included the history of diarrhoea prior to 24 months as a continuous covariate. We required children to contribute at least 250 days of diarrhoeal surveillance to be included in the regression analysis. All studies contributed data on 48 or more children for this analysis. We constructed our regression model manually (Appendix 2). Because study and sex were important determinants of stunting at 24 months, we modelled the log odds of stunting at 24 months as a function of diarrhoea prior to 24 months, sex and study. In constructing our regression model, we began with three fixed-effects parameters for each study: an intercept, a parameter for the study-specific effect of diarrhoea on stunting and a parameter for the study-specific effect of sex on stunting. We compared nested models using the likelihood ratio test (LRT) to identify the model with the fewest number of parameters. We used the LRT to determine if we could pool studies to summarize the effect of diarrhoea on stunting. We first compared a regression model with only one parameter to explain the effect of diarrhoea on stunting vs a regression model with study-specific parameters to explain the effect of diarrhoea on stunting. We then compared a regression model with only one intercept vs a regression model with study-specific intercepts, and a regression model with only one parameter for a sex effect on stunting vs a regression model with study-specific parameters for a sex effect on stunting. We used the Hosmer-Lemeshow test to determine goodness-of-fit in logistic regression.33 We used Pearson residuals and deviance residuals to identify outliers,34 and used Pregibon’s delta–beta statistic to identify influential data points.34 In separate regression analyses, we estimated the odds ratio of stunting at 24 months of age by four categories of cumulative diarrhoeal incidence and four categories longitudinal diarrhoeal prevalence prior to 24 months. To calculate attributable risks, we categorized cumulative diarrhoeal incidence before 24 months (<5 episodes and ≥5 episodes) and longitudinal diarrhoeal prevalence before 24 months (<2% and ≥2%) into only two groups that represented a ‘low’ or ‘high’ cumulative burden. We calculated the proportion of stunting at 24 months of age attributed to having a high cumulative burden of diarrhoea prior to 24 months of age using parameter estimates obtained from logistic regression.35 We conducted biostatistical analyses in Stata and R (R Foundation for Statistical Computing, www.r-project.org). Fewer children had complete information on the requested socioeconomic variables. To determine whether socioeconomic status confounded the effect of diarrhea on stunting, we conducted a subset analysis using the data of children with complete SES data. To determine if the results of our regression model were affected by the exposure period, we modelled the effects of diarrhea prior to 23 months and the effects of diarrhea prior to 22 months on the prevalence of stunting at 24 months of age. We also conducted various subset analyses to exclude children who were stunted between birth and 6 months of age. Because not all children had an anthropometric measurement before 6 months of age, fewer children and fewer studies were included in these subset analyses. In the subset analyses that excluded children who were stunted at 6 months of age, we included HAZ at 6 months in our regression model. We accepted the HAZ measurement at the oldest date in the interval between 3 and 6 months of age as the HAZ at 6 months.
N/A