Background: A significant number of girls in Ethiopia begin childbearing at an early age. Teenage pregnancy is the main contributor to maternal and child morbidity and mortality, and the vicious cycle of ill-health and poverty. However limited evidence exists about individual-and community-level factors affecting teenage pregnancy in Ethiopia. Methods: This study used data from the 2016 Ethiopian Demographic and Health Survey (EDHS). A total of 3381 (weighted) teenagers aged 15–19 years were included in the study. A two-stage stratified cluster was used. Data were analyzed using Stata version 14. Multilevel mixed effect logistic regression was used to identify factors affecting teenage pregnancy. Results: Being 17 (AOR=9.26, 95% CI=2.67–32.04), 18 (AOR=9.53, 95% CI=2.97–30.04) and 19 years old (AOR=20.01, 95% CI=5.94–67.39), uneducated (AOR=3.83, 95% CI=1.05–14.00), primary educated (AOR=3.34, 95% CI=1.01–11.08), being married (AOR=70.12, 95% CI=27.55–178.4), and communities with a higher proportion of poor (AOR=3.86, 95% CI=1.80–8.26) were predictors of teenage pregnancy. Conclusion: Age, educational status, and marital status from individual-level factors, and community wealth status from community-level factors were predictors of teenage pregnancy. The government should strive to improve female education, and fight against early marriage and sexual initiation.
The study was conducted in Ethiopia, which is one of the Sub-Saharan African countries. It is found in the North-Eastern part of Africa, lies between 3° and 15° North latitude and 33° and 48° East longitude.37 It has a total estimated 114,530,078 population. Females’ age 15–19 years old are estimated to total 6.3 million.38 Ethiopia is one of the poorest counties, with a gross domestic product (GDP) per capita income of US$772. Nearly one-fourth of the populations of Ethiopia are living below the national poverty line.39 Though Ethiopia is making the fastest progress in ensuring access to education in SSA, it still faces challenges; low primary completion rates, a fall in enrollment rates in secondary education (30.7%), and low-quality education at all levels.40 This study was an in-depth secondary analysis of the 2016 EDHS. The EDHS has been conducted every 5 years to provide health and health-related indicators in Ethiopia. The 2016 EDHS is the latest national survey conducted in nine regional states and two administrative cities. The regions include Tigray, Afar, Amhara, Oromia, Somali, Benishangul-Gumuz, Southern Nations, Nationalities and Peoples’ Region (SNNPR), (Gambella, and Harari. Administrative cities include Addis Ababa and Dire Dawa). Administratively, regions in Ethiopia are divided into Zones, and Zones into administrative units called Woredas. Each Woreda is further subdivided into the lowest administrative unit, called Kebeles. During the 2007 census, each Kebele was subdivided into census enumeration areas (EAs), which were convenient for the implementation of the census.7 The 2016 EDHS was cross-sectional by design. The 2016 EDHS sample was stratified and selected in two stages. In the first stage, stratification was conducted by region and then in each region stratified as urban and rural, yielding 21 sampling strata. A total of 645 EAs (202 in urban areas and 443 in rural areas) were selected with probability proportional to EA size in each sampling stratum. In the second stage, a fixed number of 28 households per cluster were with an equal probability systematic selection from the newly created household listing. The outcome variable was dichotomized as teenage pregnancy (yes/no). A woman was considered as experiencing teenage pregnancy if her age was from 15–19 and if she had ever been pregnant before or during the survey. Regarding media exposure, a woman was considered as having media exposure if she listened to both radio and television at least once a week. The variable wealth index was re-categorized as “Poor”, “Middle”, and “Rich” categories by merging poorest with poorer and richest with richer.25 Community-level variables were computed by aggregating the individual women characteristics into clusters. Then the proportion was calculated by dividing subcategories to the total. Distributions of the proportion of aggregate variables were checked using the Shapiro–Wilk normality test and were not normally distributed. Therefore, these aggregate variables were categorized using the median value. A total of eight community variables were generated. Family disruption was created using the proportion of female-headed houses in their cluster.33 Community educational status was computed based on the proportion of below secondary educational status in their cluster. Community wealth status was computed using the proportion of poor wealth index in each cluster. Community-level literacy was calculated based on the proportion illiterate in each cluster; the same is true for other community-level variables.25 Data were cleaned to check its consistency and missing values. Descriptive statistics such as frequencies, median, and percentages were computed. The data were analyzed using Stata version 14.0. Sampling weights were done to compensate for the non-proportional allocation of the sample to strata as well as for non-responses. The EDHS data are hierarchical, ie, individuals were nested within communities, and Intra-class Correlation Coefficient (ICC) was greater than 10% (ICC=34%). Therefore, a two-level mixed-effects logistic regression model was conducted to estimate both independent (fixed) effects of the explanatory variables and community-level random effects on teenage pregnancy. The log of the probability of being pregnant at teenage was modelled using a two-level multilevel model as follows;41 Where, πij is the probability of being pregnant for the ith teenager in the jth community; 1-πij is the probability of being a non-pregnant teenager; i and j are the level 1 (individual) and level 2 (community) units, respectively; X and Z refer to individual- and community-level variables, respectively; the β’s are the fixed coefficients –therefore, for every one-unit increase in X/Z there is a corresponding effect on the probability of being pregnant as a teenager. Whereas, β0 is the intercept – the effect on the probability of being pregnant as a teenager in the absence of influence of predictors; and uj shows the random effect (effect of the community on a teenager to become pregnant) for the jth community and eij showed random errors at the individual levels. By assuming each community had a different intercept (β0) and fixed coefficient (β), the clustered data nature and the within and between community variations were taken into account. In the analysis first, bivariable multilevel logistic regression was computed and variables with a P-value less than 0.3 were included in multivariable multilevel logistic regression. Four models were displayed in this analysis, Model 0 (model containing no factors), Model 1 (containing only individual factors), Model 2 (containing only community factors), and Model 3 (both individual- and community-level factors). Variables with a P-value of less than 0.05 had a statistically significant association with the outcome variable. The result of the fixed effect was presented as Adjusted Odds Ratio (AOR) with their 95% confidence interval (95% CI). The measures of variation (random-effects) were reported using ICC, a proportional change in variance (PCV), and Median Odds Ratio (MOR). The ICC was used to show how much the observation within one cluster resembled each other, and MOR is a measure of unexplained cluster heterogeneity. The ICC was computed using this formula as follows: [], where is the estimated variance of clusters. MOR is the median value of the odds ratio between the area at highest risk and the area at the lowest risk when randomly picking out two areas and calculated using the formula []. The proportional change in variance (PCV) signifies the total variation attributed by individual-level factors and area-level factors in the multilevel model. Standard error at the cut-off point of ±2 was used to check multicollinearity and there was no multicollinearity. The goodness of fit of the model was checked by the log-likelihood test. An authorization letter was also obtained from CSA for downloading the EDHS data set by requesting the website www.measuredhs.com. Ethical clearance for the primary study (EDHS 2016) was obtained from Ethiopia Health and Nutrition Research Institute Review Board, the Ministry of Science and Technology, Institutional Review Board of ICF International, and the Centers of Disease Control and Prevention (CDC). The accessed data were used for the registered research only. All data were treated as confidential and no effort was made to identify any household or individual respondent interviewed in the survey. The detailed information on methodology and the ethical issue was published in the EDHS report.
N/A