Background: Malaria in pregnancy is a major public health challenge, but its risk factors remain poorly understood in some settings. This study assessed the association between household and maternal characteristics and malaria among pregnant women in a high transmission area of Uganda. Methods: A nested prospective study was conducted between 6th September 2016 and 5th December 2017 in Busia district. 782 HIV uninfected women were enrolled in the parent study with convenience sampling. Socioeconomic and house construction data were collected via a household survey after enrolment. Homes were classified as modern (plaster or cement walls, metal or wooden roof and closed eaves) or traditional (all other homes). Maternal and household risk factors were evaluated for three outcomes: (1) malaria parasitaemia at enrolment, measured by thick blood smear and qPCR, (2) malaria parasitaemia during pregnancy following initiation of IPTp, measured by thick blood smear and qPCR and (3) placental malaria measured by histopathology. Results: A total of 753 of 782 women were included in the analysis. Most women had no or primary education (75%) and lived in traditional houses (77%). At enrolment, microscopic or sub-microscopic parasitaemia was associated with house type (traditional versus modern: adjusted risk ratio (aRR) 1.29, 95% confidence intervals 1.15-1.45, p < 0.001), level of education (primary or no education versus O-level or beyond: aRR 1.13, 95% confidence interval 1.02-1.24, p = 0.02), and gravidity (primigravida versus multigravida: aRR 1.10, 95% confidence interval 1.02-1.18, p = 0.009). After initiation of IPTp, microscopic or sub-microscopic parasitaemia was associated with wealth index (poorest versus least poor: aRR 1.24, 95% CI 1.10-1.39, p < 0.001), house type (aRR 1.14, 95% CI 1.01-1.28, p = 0.03), education level (aRR 1.19, 95% CI 1.06-1.34, p = 0.002) and gravidity (aRR 1.32, 95% CI 1.20-1.45, p < 0.001). Placental malaria was associated with gravidity (aRR 2.87, 95% CI 2.39-3.45, p < 0.001), but not with household characteristics. Conclusions: In an area of high malaria transmission, primigravid women and those belonging to the poorest households, living in traditional homes and with the least education had the greatest risk of malaria during pregnancy.
This study was conducted in Busia district, an area in south-eastern Uganda where malaria transmission is perennial and holoendemic. This prospective cohort study was part of a randomized controlled trial of intermittent preventive treatment of malaria in pregnancy (IPTp), which has been previously described [23]. Briefly, eligible participants for the parent study were HIV-uninfected women at least 16 years of age with a viable pregnancy between 12 and 20 weeks gestation who provided written informed consent. At enrolment, women received a long-lasting insecticidal net (LLIN), underwent a standardized history and examination and had blood collected for the detection of malaria parasites by microscopy and quantitative PCR (qPCR). Women were randomized (1:1 ratio) to receive IPTp with monthly sulfadoxine–pyrimethamine (SP) or monthly dihydroartemisinin–piperaquine (DP) starting at 16 or 20 weeks gestational age as previously described [23]. Following enrolment, women were visited at home where a household survey was conducted to collect socioeconomic and house construction data using a structured questionnaire. Women received all their medical care at a study clinic open every day. Routine visits at the study clinic were conducted every 4 weeks, including collection of blood for the detection of malaria parasites by microscopy and quantitative qPCR. Women were encouraged to come to the clinic any time they were ill. Those who presented with a documented fever (tympanic temperature ≥ 38.0 °C) or history of fever in the previous 24 h had blood collected for a thick blood smear. If the smear was positive, the patient was diagnosed with malaria and treated with artemether–lumefantrine. Women were encouraged to deliver at the hospital adjacent to the study clinic. Women delivering at home were visited by study staff at the time of delivery or as soon as possible afterwards. At delivery, a standardized assessment was completed including collection of placental tissue for assessment of placental malaria. Blood smears were stained with 2% Giemsa and read by experienced microscopists. A blood smear was considered negative when the examination of 100 high power fields did not reveal asexual parasites. For quality control, all slides were read by a second microscopist and a third reviewer settled any discrepant readings. Blood samples collected at enrolment and at the time of each routine visit that were negative by microscopy were tested for the presence of submicroscopic parasitaemia using a highly sensitive qPCR assay targeting the multicopy conserved var gene acidic terminal sequence with a lower limit of detection of 1 parasite/ml [24]. Placental tissues were processed for histological evidence of placental malaria as previously described [23]. Data were collected in the study clinic using standardized case record forms entered into Microsoft Access. Data from the household survey were collected using hand-held computers and customized software designed and programmed to include range checks and internal consistency checks. All statistical analyses were performed using Stata version 14.1 (StataCorp, College Station, TX, USA). Exposure variables of interest included characteristics of the study participants (education, bed net ownership, gravidity and IPTp regimen) and their households (wealth index and house construction). Principal component analysis was used to generate a wealth index based on ownership of common household items. Households were ranked by wealth scores and grouped into tertiles to give a categorical measure of socioeconomic position. House types were classified based on definitions previously developed for the study area [25]. Modern houses were defined as having plaster or cement walls, metal or wooden roofs, and closed eaves; all other houses were defined as traditional. Three outcome measures were assessed: (1) microscopic and microscopic or sub-microscopic parasitaemia at enrolment, (2) microscopic and microscopic or sub-microscopic parasitaemia at the time of routine visits during pregnancy following initiation of IPTp, and (3) placental malaria based on the detection of malaria parasites or pigment by histopathology. Associations between exposure variables and parasitaemia at enrolment or placental malaria were estimated using generalized linear models with a Poisson family and robust error variance. Associations between exposure variables and parasitaemia during pregnancy were estimated using generalized estimating equations to adjust for repeated measures in the same study participant with a Poisson family and robust error variance. Measures of association were expressed as unadjusted and adjusted relative risks (RR and aRR, respectively) and p-values (two-sided) < 0.05 were considered statistically significant.
N/A