Background: Scale-up of malaria interventions seems to have contributed to a decline in the disease but other factors may also have had some role. Understanding changes in transmission and determinant factors will help to adapt control strategies accordingly. Methods: Four sites in Ethiopia and Uganda were set up to monitor epidemiological changes and effectiveness of interventions over time. Here, results of a survey during the peak transmission season of 2012 are reported, which will be used as baseline for subsequent surveys and may support adaptation of control strategies. Data on malariometric and entomological variables, socio-economic status (SES) and control coverage were collected. Results: Malaria prevalence varied from 1.4 % in Guba (Ethiopia) to 9.9 % in Butemba (Uganda). The most dominant species was Plasmodium vivax in Ethiopia and Plasmodium falciparum in Uganda. The majority of human-vector contact occurred indoors in Uganda, ranging from 83 % (Anopheles funestus sensu lato) to 93 % (Anopheles gambiae s.l.), which is an important factor for the effectiveness of insecticide-treated nets (ITNs) or indoor residual spraying (IRS). High kdr-L1014S (resistance genotype) frequency was observed in A. gambiae sensu stricto in Uganda. Too few mosquitoes were collected in Ethiopia, so it was not possible to assess vector habits and insecticide resistance levels. ITN ownership did not vary by SES and 56-98 % and 68-78 % of households owned at least one ITN in Ethiopia and Uganda, respectively. In Uganda, 7 % of nets were purchased by households, but the nets were untreated. In three of the four sites, 69-76 % of people with access to ITNs used them. IRS coverage ranged from 84 to 96 % in the three sprayed sites. Half of febrile children in Uganda and three-quarters in Ethiopia for whom treatment was sought received diagnostic tests. High levels of child undernutrition were detected in both countries carrying important implications on child development. In Uganda, 7-8 % of pregnant women took the recommended minimum three doses of intermittent preventive treatment. Conclusion: Malaria epidemiology seems to be changing compared to earlier published data, and it is essential to have more data to understand how much of the changes are attributable to interventions and other factors. Regular monitoring will help to better interpret changes, identify determinants, modify strategies and improve targeting to address transmission heterogeneity.
A ‘study site’ in the context of the project is defined as a ‘health centre and the catchment population in selected villages around it’. Two study sites were selected per country in Ethiopia and Uganda, representing different epidemiological settings in rural environments (Table 1). Beyond Garki study sites in Uganda and Ethiopia SNNP Southern Nations, Nationalities and Peoples The selection of the study sites was based on the need to represent different epidemiological (transmission) settings, geographical location and accessibility, and availability of adequate baseline morbidity data. The four study sites represented settings ranging from low seasonal transmission in the Ethiopia sites to high perennial transmission in the Uganda sites. Only villages in close proximity to the health centres were selected, covering a radius of approximately 2–6 kms to reduce potential bias in the analysis of treatment-seeking and use of services by the study population. Most areas below 2000 m above sea level are considered malarious in Ethiopia. An estimated 60 % of the population live in areas at risk of malaria transmission [13]. Both Plasmodium falciparum and Plasmodium vivax are common. The Malaria Indicator Survey (MIS) during October-December 2011 showed that nationally the prevalence of malaria was 1.3 % in areas below 2000 m; 77 % of the positive slides were P. falciparum infections [14]. There is marked seasonality in transmission and geographic variation in intensity. Many areas are epidemic-prone. Anopheles arabiensis is the main vector species [15]. Anopheles pharoensis, Anopheles funestus and Anopheles nili are considered secondary vectors. Resistance of the main vector against DDT and pyrethroids is widespread in the country [16]. Ethiopia’s organized malaria control began in 1959 when the Malaria Eradication Service was established a year after a major epidemic claimed an estimated 150,000 lives [17]. A blanket DDT spraying campaign was used until the early 1970s, when the eradication strategy was abandoned and replaced with a control programme [18]. The programme, based on selective spraying and treatment of cases, continued until the mid-1990s after which the specialized service was gradually integrated into the general health services. There has been a substantial increase in coverage of key interventions in the country. More than 64 million long-lasting insecticidal nets (LLINs) were distributed through mass campaigns between 2005 and 2014 [13]. IRS is also implemented in many areas. Through the expansion of basic health services, mainly health posts, diagnostic and treatment services have increased over the years. Malaria is highly endemic in approximately 95 % of the country where 90 % of the population live. The MIS in November and December 2009 reported that 42 % of children under the age of five tested positive for malaria with microscopic diagnosis [19]. Plasmodium falciparum is responsible for 99 % of malaria cases. The disease accounts for 25–40 % outpatient visits and nearly half of inpatient paediatric deaths [20]. The main malaria vectors are Anopheles gambiae s.s., A. arabiensis and A. funestus [19, 20]. Although IRS was implemented in limited sites as part of the WHO pilot programme between 1959 and 1963, the operation was not scaled up [21]. Treatment of cases remained the only malaria control measure for many years. The Malaria Control Unit was established in 1995 and grew into the National Malaria Control Programme. The main preventive interventions in Uganda are LLINs, IRS in selected districts, and intermittent preventive treatment in pregnancy (IPTp). Uganda has scaled up effective case management and in some regions village health teams (VHTs) were trained to test and treat common childhood illnesses including malaria through Integrated Community Case Management (ICCM). In 2009, 47 % of households owned at least one insecticide-treated net (ITN) compared to 16 % in 2006 [19, 22]; this increased to 60 % in 2011 [23]. These combined efforts are believed to have resulted in reduced transmission in many areas [24]. Up to 10 districts in northern Uganda have been sprayed in the past 6–7 years within the IRS programme supported by the US Government’s Presidential Malaria Initiative (PMI) [20]. Starting from 2014, more northern and eastern districts were added while the operation ended in others (including Apac, the district containing the study site Aduku) due to a decline in transmission. A large reduction in malaria prevalence was observed in children living in sprayed areas compared to those living in unsprayed areas [25]. Meanwhile, more than 21 million LLINs were distributed in a nation-wide mass campaign during 2012–2014. Repeat cross-sectional surveys were conducted in the selected sites (of which only results from the first study are presented here as the baseline data). The study also included longitudinal collection of meteorological and morbidity data at health facilities. The main components include: household surveys, malariometric and serological surveys, entomological surveys, health facility-based morbidity studies, and climatic studies. For the household surveys, the required sample size was estimated for each site by assuming 5 and 50 % baseline prevalence in children below 10 years in Ethiopia and Uganda, respectively. All households in villages around each health centre (within radius of 2–6 kms) were enumerated and included in the sampling frame. A simple random sample of 571 and 234 households were selected in each site in Ethiopia and Uganda, respectively. The sample sizes were determined separately for the two countries based on expected malaria prevalence rates, household sizes and a 10 % non-response rate using appropriate statistical procedures, and sample sizes for each site were calculated independently assuming simple random sampling. The household surveys included interviews with household heads and women aged 15–49 years of age using handheld devices (smartphones with Pendragon Forms 5.1 or tablets with Open Data Kit). Data were collected on variables indicating socio-economic status (SES), prevention methods, knowledge about malaria, ITN ownership and use, as well as number of children born to interviewed women who were alive and dead, febrile illness in children, treatment sought and protection against malaria during pregnancy. Each member of the sampled households (except infants under 6 months) was given a subject card and asked to visit a malariometric testing site within the village to obtain anthropometric measurements and collect blood samples. Bodyweight, temperature, height and mid-upper arm circumference were measured for children under five. Thick and thin blood films for microscopy, dry blood spots for serology and blood samples for haemoglobin measurement using the HemoCue machine (Hb 301, Ängelholm, Sweden) were obtained for all subjects. RDTs (CareStart™ pf-HRP2/pan-pLDH by Access Bio USA in Ethiopia and SD Bioline in Uganda) were used to test subjects with body temperature 37.5 °C and above or history of fever in the previous 48 h. Individuals with fever or history of fever were tested by RDT for the purpose of providing anti-malarial treatment. Treatment was provided at the field site according to national guidelines for mild and moderate anaemia (using ferrous sulphate) and uncomplicated malaria cases (using artemether–lumefantrine for P. falciparum and chloroquine for P. vivax), while severe cases were referred to the site’s health centre. Slides were stained with Giemsa and examined by two independent microscopists for presence/absence of asexual parasites and gametocytes and species identification. In the case of discrepant results, a third microscopist examined the slides for a final verification. Serological analysis of dry blood spots from the Uganda sites was carried out to determine antibody responses to assess malaria transmission intensity over an extended period of time. The antibody response of individuals against merozoite surface protein-119 (MSP-119) was determined using an enzyme-linked immunosorbent assay (ELISA). Serum obtained from the dried blood spots on filter papers was analysed at the Medical Research Council (MRC) Laboratory in Uganda for total IgG antibodies using P. falciparum antigen MSP-119 (CTK Biotech, USA, cat. No. A3003) following previously described methods [26, 27]. Anopheles mosquitoes were sampled to determine species composition, densities, behaviour and insecticide resistance using light trap collection, exit trap collection, room search, pyrethrum spray catch and human landing catch (HLC) in 12 houses per site selected using simple random sampling from the sampling frame for the household survey. Mosquitoes were identified using morphological features and individually packed in microtubes for molecular analysis, which were carried out at Rothamsted Research in the UK [28]. Genomic DNA was extracted using the Livak method. A. gambiae s.l. samples were analysed to determine whether they were A. gambiae s.s. or A. arabiensis [29, 30]. Anopheles gambiae s.l. samples were analysed mainly for knock down resistance (kdr) mutations (but also for mutation in the ace-1 gene which encodes the acetylcholinesterase enzyme although not reported here) [31]. Other components of the study not reported in the present paper include: use of automatic weather stations (BWS200 automatic weather station, Campbell Scientific, Stellenbosch, South Africa) installed in all sites to record hourly meteorological data, compilation of outpatient morbidity data for every suspected or confirmed malaria patient seen at the health facility in each site, and mathematical modelling of transmission. Ethical clearance was obtained from the appropriate review boards (Uganda: UNCST 1348; Ethiopia: 3-10/819/05). In addition, written consent was obtained from respondents for interviews, for all subjects that participated in malariometric surveys, and from household heads for entomology sentinel houses. EpiData v3.1 (The EpiData Association, Odense, Denmark) was used for data entry where necessary. Stata versions 12 and 13 (StataCorp LP, College Station, TX, USA) and Microsoft Excel (Microsoft Corporation) were used for data analysis. Chi squared tests were used where appropriate to assess significant differences between groups of interest, taking into account clustering at household level. Principal components analysis (PCA) was used to calculate wealth index for each household, computed separately for each country. Infection prevalence data were analysed in relation to potential household or individual risk factors such as coverage and use of prevention methods, housing conditions, demographic factors and socio-economic status. Undernutrition was studied using the anthropometric data for children under five. A Stata program file ZSCORE06 developed by Jef Leroy (Boston College Department of Economics) was used to calculate anthropometric z-scores using the 2006 WHO Child Growth Standards [32]. Anaemia was classified as mild, moderate or severe based on the concentrations of haemoglobin (Hb) as follows; (a) mild anaemia: for non-pregnant women, Hb 10.0–11.9 g/dl; for pregnant women and children under 5, Hb 10.0–10.9 g/dl; for men: Hb 10.0–12.9 g/dl; (b) moderate anaemia: Hb 7.0–9.9 g/dl; c) severe anaemia: Hb <7.0 g/dl [33]. Optical density (OD) values were analysed in Microsoft Excel using a macro file provided by C. Drakeley, London School of Hygiene and Tropical Medicine (LSHTM). Normalized OD values were used for data analysis using a Stata procedure provided by C. Drakeley (LSHTM). A cut-off value of 0.177 was used to determine seropositive samples. Age seroprevelance curves were generated using methods described by Corran et al. [34]. Data for children below 2 years was excluded to avoid potential bias caused by maternal antibodies [35]. A variant of the Brass indirect method [36] was used to calculate under-five mortality rate (U5MR) using the summary birth history dataset provided by women of child-bearing age which included age of mother, total number of live births and total number of deaths [37]. Mortality rates were not calculated for the 3 years period before the survey date (2009–2012), namely data related to women aged 15–19, because of the selection effect where women from lower socioeconomic classes tend to start childbearing early and their children face above average mortality risks [38]; and because random errors are larger for estimates based on the reports of young women, since they have fewer children ever born. Various entomological parameters were estimated including species compositions, and indoor resting and biting habits. Human biting rates (i.e., the number of bites per person per night) were calculated taking into account the number of collectors working simultaneously, the number of collection nights, and the assumed night-time behaviour of the local human populations. It was assumed that an average villager in each of the sites spends 1 h on average outdoors between 18:00 h and 22:00 h, and all villagers are indoors after 22:00 h.
N/A