Background: Consistent use of insecticide-treated nets (ITNs) and intermittent preventive treatment in pregnancy (IPTp) have been recommended as cost-effective interventions for malaria prevention during pregnancy in endemic areas. However, the coverage and utilization of these interventions during pregnancy in sub-Saharan Africa is still suboptimal. This study aimed to determine the uptake of IPTp and ITNs and associated factors among women during their recent pregnancy in Eastern Uganda. Methods: This was a cross-sectional study conducted among 2062 women who had delivered within the last 12 months prior to the start of the study in three districts of Eastern Uganda. The primary outcomes were consistent ITN use and optimal uptake (at least 3 doses) of IPTp. A modified Poisson regression was used to examine the association between consistent ITN use and the uptake of optimal doses of IPTp with independent variables. Data were analysed using Stata 14 software. Results: The level of uptake of IPTp3 (at least three doses) was 14.7%, while IPTp2 (at least two doses) was 60.0%. The majority (86.4%) of mothers reported regularly sleeping under mosquito nets for the full duration of pregnancy. Uptake of IPTp3 was associated with engaging in farming (adjusted PR = 1.71, 95% CI [1.28–2.28]) or business (adjusted PR = 1.60, 95% CI [1.05–2.44]), and attending at least 4 antenatal care (ANC) visits (adjusted PR = 1.72, 95% CI [1.34–2.22]). On the other hand, consistent ITN use was associated with belonging to the fourth wealth quintile (adjusted PR = 1.08, 95% CI [1.02–1.14]) or fifth wealth quintile (adjusted PR = 1.08, 95% CI [1.02–1.15]), and attending at least 4 ANC visits (adjusted PR = 1.07, 95% CI [1.03–1.11]). Conclusion: Uptake of IPTp3 and consistent ITN use during pregnancy were lower and higher than the current Ugandan national targets, respectively. Study findings highlight the need for more efforts to enhance utilization of ANC services, which is likely to increase the uptake of these two key malaria preventive measures during pregnancy.
This was a cross-sectional study conducted in the districts of Iganga, Luuka and Buyende in eastern Uganda. This region is predominantly rural, cover an area of 3549.8 km2, and have an estimated population of 1,065,284 inhabitants living in 208,030 households [13]. These districts are served by at least 75 government-run health facilities and several private not for profit (PNFP) health centres [14]. Malaria, which is mostly attributable to Plasmodium falciparum, is endemic in this area. The main economic activity in these districts is subsistence farming, but other occupations include small-scale businesses, such as fishing, grain milling, market vending, motorcycle transport and formal employment. The Basoga, a Bantu-speaking group, are the predominant ethnic group, which make up to 9% of Uganda’s population [14]. The study units were households, and the study domain included women who had delivered in the last 12 months prior to the start of the study and were resident in the area. Mothers were included in the study whether the child was delivered preterm or full-term, and irrespective of the birth outcome (whether the baby was alive or dead). Those who had not lived in the community for at least 1 year were excluded from the study. Data were collected from 2062 mothers in three health sub-districts (HSDs): Buyende, Luuka, and Iganga. Sixteen (16) sub-counties (6 in Buyende, 6 in Luuka, and 4 in Iganga) were proportionately selected from the HSDs. The sub-counties in each HSD were randomly selected and within each sub-county, one parish was randomly selected. Two villages were randomly selected from each parish, and a list of households with mothers who met the criteria were listed. Participants were sampled at the village level using simple random sampling from the village listing made with the aid of local council 1 (village) leader. From each selected village, at least 50 households were visited by the enumerators from which one eligible respondent was selected per household. This study utilized secondary data from a broader study entitled “Innovations for increasing access to integrated safe delivery, PMTCT and newborn care in Rural Uganda”. An interviewer-administered structured questionnaire developed based on the literature on the uptake of IPTp-SP and ITNs among pregnant women was used to collect quantitative data. The original English questionnaire was translated to Lusoga, the local language spoken by the study participants. Data were collected on socio-demographic characteristics, uptake of IPTp-SP, ITNs, and frequency of ANC visits. Research assistants were trained on appropriate methods of data collection, and the tool appropriately piloted. The primary outcome variables of the study were consistent ITN use and optimal uptake of IPTp-SP which were self-reported. Consistent ITN use was defined as sleeping under an ITN every night for the full duration of the last pregnancy, while optimal uptake of IPTp-SP was defined as 3 or more doses received during pregnancy. The covariates (independent variables) included the timing of first ANC, number of ANC visits, sociodemographic characteristics (such as maternal age, marital status, level of education of women, occupation, household size, parity, and wealth (measured using a wealth asset index). The wealth quintiles were generated using principal component analysis based on the information collected on assets owned and household structure. The covariates used for this study were selected from critical review of related published literature [11, 12]. Data were analysed using Stata Version 14.0 (StataCorp, Texas, US). Descriptive statistics such as frequencies and percentages were used to present categorical data, while means and standard deviations were used where data were continuous. The associations between the outcome variables (consistent ITN use and uptake of 3 or more IPTp-SP doses) and explanatory variables were explored using modified Poisson regression. Initially, unadjusted prevalence ratios (PRs) were obtained for the association between each outcome and each predictor variable. Prevalence ratios were preferred over odds ratios since odds ratios would overestimate the effect size when outcomes are common (prevalence > 10%) [15, 16], as was the case in the current study. All epidemiologically meaningful independent variables were considered for a fully saturated model. Interactions between predictor variables and the primary outcomes were as well examined. A stepwise backward elimination method was then applied, removing variables with the largest non-significant p values, systematically until only significant variables and those that improved the fit of the model were retained. The prevalence ratios (PR) and 95% confidence intervals are presented. A p-value of less than 0.05 was considered statistically significant.
N/A