Background Environmental enteropathy (EE), the adverse impact of frequent and numerous enteric infections on the gut resulting in a state of persistent immune activation and altered permeability, has been proposed as a key determinant of growth failure in children in low- and middle-income populations. A theory-driven systems model to critically evaluate pathways through which enteropathogens, gut permeability, and intestinal and systemic inflammation affect child growth was conducted within the framework of the Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) birth cohort study that included children from eight countries. Methods Non-diarrheal stool samples (N = 22,846) from 1253 children from multiple sites were evaluated for a panel of 40 enteropathogens and fecal concentrations of myeloperoxidase, alpha-1-antitrypsin, and neopterin. Among these same children, urinary lactulose:mannitol (L:M) (N = 6363) and plasma alpha-1-acid glycoprotein (AGP) (N = 2797) were also measured. The temporal sampling design was used to create a directed acyclic graph of proposed mechanistic pathways between enteropathogen detection in non-diarrheal stools, biomarkers of intestinal permeability and inflammation, systemic inflammation and change in length- and weight- for age in children 0–2 years of age. Findings Children in these populations had frequent enteric infections and high levels of both intestinal and systemic inflammation. Higher burdens of enteropathogens, especially those categorized as being enteroinvasive or causing mucosal disruption, were associated with elevated biomarker concentrations of gut and systemic inflammation and, via these associations, indirectly associated with both reduced linear and ponderal growth. Evidence for the association with reduced linear growth was stronger for systemic inflammation than for gut inflammation; the opposite was true of reduced ponderal growth. Although Giardia was associated with reduced growth, the association was not mediated by any of the biomarkers evaluated. Interpretation The large quantity of empirical evidence contributing to this analysis supports the conceptual model of EE. The effects of EE on growth faltering in young children were small, but multiple mechanistic pathways underlying the attribution of growth failure to asymptomatic enteric infections had statistical support in the analysis. The strongest evidence for EE was the association between enteropathogens and linear growth mediated through systemic inflammation. Funding Bill & Melinda Gates Foundation.
The MAL-ED study, conducted in eight diverse sites on three continents: Bangladesh (Dhaka: BGD), India (Vellore: INV), Nepal (Bhaktapur: NEB), and Pakistan (Naushero Feroze: PKN) in Southern Asia; Brazil (Fortaleza: BRF) and Peru (Loreto: PEL) in Latin America; and South Africa (Venda: SAV) and Tanzania (Haydom: TZH) in Sub-Saharan Africa. The study design is described in detail elsewhere (MAL-ED Network Investigators, 2014b). In brief, children were enrolled within 17 days of birth, but excluded if they had a birth weight < 1500 g, were very ill, or were non-singleton; or if their mother was 40 pathogens using a standardized approach (Houpt et al., 2014). In addition to analyzing total number of pathogens detected per stool, we also categorized pathogens into five groups based on pathophysiology. Group I included viruses that cause limited mucosal disturbances (rotavirus, adenovirus and astrovirus). Group II included bacteria that are enteroinvasive or cause extensive mucosal disruption (Campylobacter, Shigella, Salmonella, Plesiomonas, Yersinia, enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC) and Aeromonas). Group III was enterotoxigenic E. coli (ETEC), which is a cause of secretory diarrhea with only limited mucosal changes. Cryptosporidium (Group IV) and Giardia (Group V) were considered independently as organisms have both been shown to be associated with linear growth failure and prolonged and persistent carriage. Three fecal biomarkers relating to aspects of gut inflammation and immunity (“local inflammation” in Fig. 1) were evaluated using the same non-diarrheal stool samples assayed for enteropathogens:(Kosek et al., 2014, Kosek et al., 2013) (1) myeloperoxidase (MPO, ng/mL) as a marker of neutrophil activity in the intestinal mucosa (Alpco, Salem, NH, USA); (Keusch et al., 2013) neopterin (NEO, nmol/L) to indicate T-helper cell 1 activity (GenWay Biotech, San Diego, CA, USA); and (Keusch et al., 2014) alpha-1-antitrypsin (AAT, mg/g) to indicate protein loss and intestinal permeability (Biovendor, Candler, NC, USA). Because diarrhea leads to stool dilution, fecal biomarker values were excluded if proximate to diarrheal symptoms (within seven days prior). Similarly, stools collected the day of or the day following the L:M test were excluded as this test is an osmotic laxative. In addition to fecal biomarkers, urinary L:M testing (“gut permeability” in Fig. 1) was performed at three, six, nine, and 15 months, as described elsewhere (Kosek et al., 2014). Urine samples were processed using high-performance liquid chromatography and pulsed amperometric detection or ion chromatography (depending on study site). The results were converted into a sample-based Z-score (LMZ) to minimize age and sex trends. Data from the BRF cohort were used as the internal reference standard. Finally, systemic inflammation was evaluated at seven, 15, and 24 months using alpha-1-acid glycoprotein (AGP) concentration in plasma. Incidence of acute lower respiratory infection (ALRI), diarrhea, fever (associated with neither ALRI nor diarrhea), and a composite for any of the three categorized illness episodes in the seven or 14 days preceding the blood collection were drawn from bi-weekly maternal reports. These were used to examine the influence of recent, non-diarrheal, overt illness on AGP concentration. Monthly length (cm) and weight (kg) measures (Lohmann et al., 1988) were converted to Z-scores (LAZ, WAZ respectively) based on WHO 2006 standards (World Health Organization, 2006). The change (Δ) in LAZ and WAZ for each child (final minus initial value for each period) served as the outcome in all analyses, controlling for the initial value. Intense quality assurance review procedures identified bias within the PKN length measures; therefore, these data were excluded from the system analysis. PKN biomarker data were however, included in the evaluation of associations between pathogens and biomarkers. First, to maximally leverage the large size of the MAL-ED dataset and to place our results in the context of previous studies, we analyzed relationships between pathogens and fecal biomarker concentrations, between pathogens and LMZ scores, between LMZ scores and changes in anthropometry, and among potential sources of systemic inflammation not associated with gut enteropathy. Linear mixed effects models were constructed to examine cross-sectional associations between individual pathogens and concentrations of each fecal biomarker. Specifically, the log concentrations of MPO, NEO, and AAT were modeled as functions of stool consistency (a categorical description of stool liquidity), linear and quadratic terms for child age (to capture age-related trends), the presence of individual pathogens (adjusting for the presence of other pathogens), and a random intercept for child nested in site (McCormick et al., 2016). The same model structure was extended to evaluate associations between pathogen presence and LMZ scores, limiting the analyses to non-diarrheal stools collected at the same age as the L:M test. Additionally, changes in anthropometry (ΔLAZ and ΔWAZ) over three, six, and nine month windows starting at each L:M assay were evaluated as a function of the LMZ scores. Individual children nested within their respective site were treated as a random intercept to account for clustering at both the individual child and site levels. To determine whether the concentration of AGP was related to overt illness in the seven or 14 days preceding blood collection, another linear mixed effects model was constructed with log-transformed AGP concentration as a function of age and illness (i.e., the presence of diarrhea, fever, and ALRI). A random intercept for child nested in site was included. In addition to these linear regressions and given that disease systems composed of different interacting pathways lend themselves to causal graphical modeling (e.g., Fig. 1) (Pearl, 1995, Greenland et al., 1999) we constructed a DAG model to test hypothetical pathways between the presence of enteropathogens, biomarker concentrations, and changes in LAZ and WAZ. Combining all factors into a single system allowed for the explicit partition of associations into direct and indirect pathways. Variables within this system were represented as conditionally independent, multivariate, generalized linear mixed models such that the probability of observing a given value for each variable was a function of other variables connected within the system (indicated by arrows in Fig. 1). To account for heterogeneity between sites, random effects for both site and child were added at every node. The DAG analysis focused on two time periods, 4 ≤ months ≤ 11 (Age 1) and 12 ≤ months ≤ 21 (Age 2), using the data collection schedule shown in Fig. 2 to capture temporal associations between events marked by the biomarkers. Specifically, pathogen data was coincident with collection of the fecal biomarkers (MPO, NEO, and AAT). Their collection preceded collection of L:M as alterations in gut permeability are a hypothesized result of inflammation. Measures of systemic inflammation then followed. The temporal window then extended beyond biomarker collection to assess associations with subsequent growth. Timeline for collection of stool, urine, and blood samples and their respective biomarker assays that relate to changes in growth Z-scores. The net effects of both direct and indirect pathways were simulated from the fitted DAG. Sensitivities of ΔLAZ and ΔWAZ to changes in each biomarker were examined by fixing each biomarker to its observed mean concentration as well as one standard deviation higher or lower. The ΔLAZ and ΔWAZ were then simulated and the difference between their mean values when biomarkers were raised or lowered relative to when they were held at mean concentration were estimated. The model was run in JAGS (version 3.4.0) to perform Markov Chain Monte Carlo simulations (Plummer, 2003). Further details are given in the Appendix. The Bill & Melinda Gates Foundation did not play any role in the writing of the manuscript nor did the funders have of the study had any role in the study design, data collection, analysis, or interpretation of study results. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.