Background: Infant mortality rates (IMR) remain high in many sub-Saharan African countries, especially in rural settings where access to health services may be limited. Studies in such communities can provide relevant data on the burden of and risk factors for infant death. We measured IMR and explored risk factors for infant death in a cohort of children born in Banfora Health District, a rural area in South-West Burkina Faso. Methods. A prospective community-based cohort study was nested within the PROMISE-EBF trial (NCT00397150) in 24 villages of the study area. Maternal and infant baseline characteristics were collected at recruitment and after birth, respectively. Home visits were conducted at weeks 3, 6, 12, 24 and 52 after birth. Descriptive statistics were calculated using robust standard errors to account for cluster sampling. Cox multivariable regression was used to investigate potential risk factors for infant death. Results: Among the 866 live born children included in the study there were 98 infant deaths, yielding an IMR of 113 per 1000 live births (95% CI: 89-143). Over 75% of infant deaths had occurred by 6months of age and the post neonatal infant mortality rate was 67 per 1000 live births (95% CI: 51-88). Infections (35%) and preterm births complications (23%) were the most common probable causes of death by 6months. Multivariable analyses identified maternal history of child death, polygyny, twin births and poor anthropometric z-scores at week-3 as factors associated with increased risk of infant death. Conclusions: We observed a very high IMR in a rural area of Burkina Faso, a country where 75% of the population lives in rural settings. Community-based health interventions targeting mothers and children at high risk are urgently needed to reduce the high burden of infant deaths in these areas. © 2012Diallo et al.; licensee BioMed Central Ltd.
The study took place in Banfora Health District, in the south-west of Burkina Faso close to the border with Cote d“Ivoire. The district covers an area of 6,300 km2, and had an estimated population of 282,000 in 2010 with three major ethnic groups, the Gouin, the Karoboro and the Dioula [11]. The area experiences an annual rainfall of 950 to 1250 mm during a 6-month rainy season (May-Oct). Farming and animal husbandry are the main activities in the rural areas while the town of Banfora with a population of 75,000 is a flourishing trading centre [11]. The study was conducted in three subcounties, Banfora, Soubakénédougou and Sidéradougou (Figure (Figure11). Overview of the study area. In 2006, the district health system consisted of 60 primary health facilities and one regional hospital in the town of Banfora. The ratios of health personnel to population in 2010 were estimated to be approximately 1:5300 for nurses, 1:5200 for midwives, and 1:40000 for physicians [12]. Based on official reports for the study area from the Ministry of Health in Burkina Faso, over 94% of pregnant women attended antenatal care (ANC), 77% were reported to deliver in a health facility and 66% of children aged 12–23 months were reported to have received the full set of EPI vaccines in 2010 [13]. HIV-prevalence is low in the rural areas of Banfora region and was estimated to be of 0.6% among the 15–49 years-old in 2010 [13]. The 2006-national census in Burkina Faso reported Banfora to have an IMR of 101 and a U5MR of 165 per 1000 live births [11]. A cohort study was nested within the PROMISE-EBF trial ( http://www.clinicaltrials.govNCT00397150 ), a community-based, cluster-randomized trial to promote exclusive breastfeeding (EBF) through individual peer-counselling, which was implemented in 24 villages of Banfora Health District as reported elsewhere [14,15]. Children born to all pregnant women enrolled in both arms of the main PROMISE-EBF trial formed a prospective cohort that was followed until 12 months of age. The PROMISE-EBF trial sample size was calculated using prevalence of EBF and diarrhea at 12 weeks of child age as primary outcomes [14,15]. No sample size estimation was done for infant deaths. However, post-hoc analyses showed that the sample of 866 newborns enrolled would enable us to estimate the IMR with a precision of ± 2% based on estimates from the 2006-national census in Burkina Faso [11] and a confidence level of 95%. The details of participants’ enrolment and follow-up for the first 6 months are reported elsewhere [14,16]. In summary, pregnant women were identified in each study village by female “recruiters” over a one year period (June 2006 to May 2007) through weekly household visits. In 23 villages with a mean population of 1330, a random sample of up to 4 pregnant women per village was selected monthly. In the 24th village (Siniéna) with a population of nearly 5000, we sampled 8 women per month instead of 4. Women were recruited into the EBF-trial if they met the study inclusion criteria which were as follows: pregnancy of 7 months or more, intention to remain in the village for the next 12 months, plan to breastfeed the child, absence of any severe maternal disease or mental handicap which could prevent either breastfeeding or cooperation and provision of individually written and informed consent. While the main EBF-trial included only singleton live births and planned a follow-up for 6 months, we report here on all live born children of enrolled mothers, including those who had multiple births. Children were followed-up by trained data collectors, irrespective of trial arm until they were 12 months or older. Data collection visits were scheduled at recruitment and after birth at day 7 and at weeks 3, 6, 12, 24 (± 7 days for each visit) and at 12 months. Mothers who were not at home for a scheduled home visit were revisited by data collectors three times before the visit was considered as missed. Data collection lasted from March 2006 to November 2008. Maternal baseline data (age, parity, medical history, household assets, etc.) were recorded at enrolment. Pregnancy outcomes and newborn baseline data were collected during the day-7 visit or at the earliest completed visit after birth. Newborn birth weight was recorded from the child health card when available. From week-3, we recorded information on the child’s feeding pattern and growth. Deaths at any time after birth were recorded. Infant weight and height were measured at each home visit using Seca®872 scales and a Seca®210 infantometer ( http://www.seca.com), respectively. Weight was recorded to the nearest 0.10 kg and height was measured to the nearest 0.5 cm. All interviews were conducted in the mother’s local language to improve comprehension and cooperation. A standard verbal autopsy (VA) questionnaire [17] was used to capture information on the circumstances surrounding infant deaths and was filled within 4–6 weeks. However, narrative items describing the causes of death were completed only for infants who died before 6 months of age and so cause of death was only assessed for deaths before 6 months of age. Two independent physicians reviewed the VAs to assign probable causes of death using a hierarchical grouping adapted from the Child Health Epidemiology Reference Group Classification [18] and ICD-10. Deaths during the neonatal period were classified into the following sequential cause groups: congenital defects, tetanus, trauma/surgical, preterm birth complications, birth asphyxia, sepsis/pneumonia, diarrhoea/gastroenteritis, other/unknown. Postneonatal deaths were classified into the following causes: diarrhoea/gastroenteritis, pertussis, measles, injury/surgical, meningitis, pneumonia/acute respiratory tract infection, malaria, malnutrition, other/unknown. Multiple causes were allowed, although only the primary cause of death is reported here. The opinion of a senior paediatrician was sought in cases of disagreement between the two physicians. Data collection was done using handheld computers (PDAs) with the Epihandy software ( http://www.openXdata.org) for visits up to 6 months, and with paper forms for the 12 month visit. We used the WHO’s standard definitions of neonatal (i.e. death of a live born newborn within 28 days), post-neonatal (i.e. death of an infant between 1–12 months) and infant death (i.e. the death of any live born infant before 12 months of age). The main exposures included in analyses were maternal baseline characteristics (age, parity, education, socioeconomic status, use of health services and medical history) and newborn characteristics (season of birth, sex, twinship and anthropometry). Children with birth weight <2500 g were considered as low birth weight. Anthropometric status was assessed using WHO’s standards ( http://www.who.int/childgrowth/en/). Children were classified as wasted, stunted or underweight if their relevant z-score was below −2. A child with any z-score < −2 at 3 weeks of age was defined as having a “low anthropometric score”. Data collected on paper questionnaires were entered by two independent clerks using Epidata 3.1 ( http://www.epidata.dk), cleaned and merged with the cleaned datasets from the electronic questionnaires. Data were analyzed with STATA/SE 11.0 (Statacorp, College Station, Texas). Summary statistics of continuous and discrete variables of mothers and infants were produced. The 95% confidence intervals (CI) of proportions were calculated using robust standard errors to account for the cluster sampling of the PROMISE-EBF trial. Risk of death by one year of age (commonly known as IMR) was calculated as the proportion of infant deaths per 1000 live births and a 95% CI calculated using a robust standard error. Mortality rates were estimated using survival analysis and are reported per 1000 person-years of observation (PYO). A Kaplan-Meier plot was produced to show cumulative risk of death until 12 months. Between-cluster variation in mortality rates was assessed using a likelihood ratio test (LR test) with a random-effects Cox regression model. Potential risk factors for infant deaths were screened through univariable Cox regression models for three age ranges (0–6 months, 1–12 months and 0–12 months). These analyses took account of possible clustering (fitting Cox Gamma shared frailty models in STATA/SE 11.0) and only variables with a p <0.25 in Wald-statistic tests were retained for further exploration. We explored interactions between polygyny and several maternal baseline variables including distance to nearest health facility, education, parity, ANC visits, and health facility delivery. We also looked at interactions between health facility delivery and maternal education or parity. Based on Mosley and Chen’s model [19] for risk factors assessment in child mortality, we conducted multivariable Cox regression models adjusting for distance to nearest health facility, maternal history of child death, newborn’s season of birth and sex considered as potential confounders. Covariates that remained associated with infant death risk (p < 0.05) in the adjusted models and that met major criteria for causal inference [20] were considered as risk factors. The study was approved by the Institutional Review Board of Centre MURAZ in Burkina Faso (N°013/2005/CE-CM) and by the Western Regional Committee for Medical and Health Research Ethics in Norway (Sak No05/8197). Administrative clearances were sought from the national and regional health authorities of Burkina Faso. All study participants were requested to provide individually written and informed consent prior to enrolment. All mothers and infants included in the study were offered free care and medication in local health facilities for the duration of the study, for illnesses related to lactational problems (mastitis, breast abscess) and infections (pneumonia, diarrhoea and malaria).
N/A