The World Health Organization (WHO) estimates that 40% of children in low-income countries are anemic. Therefore, iron supplements are recommended byWHOin areas with high anemia rates. However, some studies have set into question the benefits of iron supplementation in malaria-endemic regions. In Benin, a west African country with high prevalence of anemia and malaria, no iron supplements are given systematically to infants so far despite the WHO recommendations. In this context, we wanted to investigate the effect of iron levels during the first year of life on malarial risk in Benin considering complementary risk factors. We followed 400 women and their offspring between January 2010 and June 2012 in Allada (Benin). Environmental, obstetric, and numerous clinical, maternal, and infant risk factors were considered. In multilevel models, high iron levels were significantly associated with the risk of a positive blood smear (adjusted odds ratio = 2.90, P < 0.001) and Plasmodium falciparum parasitemia (beta estimate = 0.38, P < 0.001). Infants with iron levels in the lowest quartile were less likely to have a positive blood smear (P 5 mg/L), serum ferritin was adjusted following the corrections recommended by Thurnham and others in their meta-analysis,15 to avoid the extrinsic effect of inflammation on serum ferritin levels. More precisely, we multiplied serum ferritin by 0.76 in the presence of Plasmodium without inflammation, and we multiplied serum ferritin by 0.53 in case of concurrent Plasmodium infection and inflammation. We used rain quantity as a surrogate for the risk of exposure to anopheline bites. In the semirural area of Allada, malaria has a perennial transmission pattern with two transmission peaks corresponding to the rainy seasons in April–July and October–November. According to literature, rainfall can be a valid surrogate for anopheline risk.16–18 Because of the anopheline timeliness, rainfall quantity was calculated as the mean rain volume of the 7 days prior to the 2 weeks before the consultation.19 Even if the clinics were close to each other, rainfall quantity was independently assessed for each visit and each clinic. Socioeconomic status was assessed using a socioeconomic index created in a two-step process. First, socioeconomic items (home possession of latrines, electricity, a refrigerator, a television, a vehicle with at least two wheels, the mother being married, and the mother working outside the home) were plotted into a multiple correspondence analysis.20,21 Then, two predictors were created to synthesize the information, and as the first captured the large majority of the information, it was withheld as the socioeconomic index. We used this approach because it allows us to create a synthetic objective index of socioeconomic items without any a priori on the weight of each of the elements of the index. Data were double entered and analyzed with ACCESS 2003, and STATA 12.0 Software (Stata Corp, College Station, TX). Then, exploratory and univariate analyses were performed to assess the association of all variables with both infant positive smear and peripheral P. falciparum density at each visit (systematic or unscheduled visit). χ2 and Kruskal–Wallis tests were used in the univariate analyses. For time-dependent variables, univariate analyses were performed using a random intercept model at the infant level. Then, all variables with P values < 0.2 were included in either a logistic or a linear multivariate multilevel model with a random intercept and slope at the infant level including all visits (systematic and unscheduled visits) for each infant, to explore the determinants of the probability of having a positive smear or peripheral P. falciparum parasitemia, respectively. More precisely, a random slope was applied to the infant age, as the effect of the variables might differ between the infants. The statistical significance in the final multivariate models was set to P < 0.05 (two-sided tests). To evaluate the possible diverse effect of different iron levels on malaria risk, we ran the same multilevel model considering the different quartiles of corrected ferritin. The study was conducted in the context of a clinical trial. According to the International Committee of Medical Journal Editors guidelines, our clinical trial was registered as follows: EDCTP-IP.07.31080.002, MiPPAD study “Malaria in Pregnancy Preventive Alternative Drugs,” (http://clinicaltrials.gov/ct2/show/{"type":"clinical-trial","attrs":{"text":"NCT00811421","term_id":"NCT00811421"}}NCT00811421). This study was approved by the Ethics Committee of the Faculty of Medicine of Cotonou. It was explained in the local language to the mothers and their voluntary consent was obtained before enrollment.
N/A